IMPLICAÇÕES DA CATÁLISE HETEROGÊNEA NA EVOLUÇÃO QUÍMICA E ORIGEM DA VIDA

Marcelo Hermes-Lima

Departamento de Bioquímica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21910, Brasil.

Recebido em 07/07/89

ABSTRACT

This article presents a discussion about the possible relevance of heterogeneous catalysis for chemical evolution and origin of life. The catalytic role of mineral surfaces, such as clays and phosphates, in chemical evolution was first postulated by John D. Bernal in 1951. During the next three decades several authors showed experimental evidence for adsorptive and catalytic functions of these minerals. Other processes that may be relevant for the origin of life are the wetting-drying cycles in primitive aqueous environments. These cycles may have promoted the formation of sediments from a variety of soluble salts, such as calcium sulfate, with adsorptive function and catalytic activity.

1. IDÉIAS EM TUMO DO CONCEITO DE EVOLUÇÃO QUÍMICA

A idéia de que o primeiro ser vivo tenha surgido a partir da matéria inanimada é muito antiga. Charles Darwin, na segunda metade do século XIX, foi um dos primeiros a especular a respeito das condições que teriam favorecido a origem da vida com argumentos que se assemelham aos utilizados atualmente. De um trecho retirado da sua correspondência pessoal de 1871, ele relutou que compostos protéicos poderiam ter sido formados em "algum pequeno lago quente, contendo todo tipo de amônia e sais de fosfato, luz, calor, electricidade, etc.", e que seriam capazes de sofrer ainda outras transformações. Entretanto foi somente neste século que se formulou uma hipótese consistente a respeito dos processos químicos que, possivelmente, antecederam a origem da vida. Alexander I. Oparin postulou que inicialmente havia apenas uma solução de compostos orgânicos, formados a partir de gases da atmosfera primitiva, que gradualmente sofreram aumento de complexidade até sistemas coloidais ("coacervados") que, por sua vez, evoluíram para uma nova organização da matéria – a vida.

A importância das idéias de Oparin deriva de sua concepção de que o fenômeno da vida seria apenas o resultado de uma sequência de reações encadeadas ao longo do tempo. E este caminho, até a formação do primeiro ser vivo, poderia ser reproduzido em laboratório.

Outra hipótese importante, formulada por Oparin, e revisitada posteriormente por Harold Urey, foi de que a atmosfera do planeta teria sido reduzida, i.e., contendo muito pouco oxigênio molecular, e estando composta principalmente por H2, H2O, NH3, N2 e CH4 (pouco CO2 e CO). Uma atmosfera reduzida seria fundamental para a formação de compostos orgânicos na Terra primitiva, pois a presença de oxigênio destruiria os compostos orgânicos por oxidação. Entretanto, outros autores têm postulado diferentes composições como, por exemplo, uma mistura contendo oxigênio e ozônio em quantidades significativas, resultante da fotólise da água e do dióxido de carbono.

A observação astronômica tem dado sustentação à hipótese de que a atmosfera da Terra era reduzida a partir da identificação de gases como N2, CH4, H2, NH3 e HCN na atmosfera de muitos dos corpos celestes de nosso sistema solar (Júpiter, Saturno, Titã, Urano e Netuno). Estas observações são consideradas relevantes em relação à origem da vida porque as acredita, através de dados astrosfísicos, que as atmosferas destes corpos celestes tiveram tião o mesmo tipo de formação e que estejam no mesmo estágio evolutivo que a hipotética atmosfera primitiva terrestre.

Assim, sustentado nas idéias de Oparin-Urey e posteriormente no resultado da síntese de biomoléculas em condições que se supõe existiram na Terra primitiva e em simulações matemáticas do ambiente pré-biológico, está o conceito de "evolução química". De acordo com Cyril Ponnamperuma, "uma longa evolução química seria necessária para a origem da vida. Três fases químicas distintas deste processo evolutório podem ser postuladas: inorgânica, orgânica e biológica". Este moderno postulado divide em estágios as etapas evolutivas que precederam o aparecimento do primeiro ser vivo:

1. A síntese de bionomôneros como os aminoácidos, açúcares, ácidos graxos, bases purínicas e pirimidínicas, nucleosídeos e nucleotídeos em condições ambientais drásticas;
2. A formação de biopolímeros, principalmente as proteínas e ácidos nucleicos, em condições moderadas;
3. O aparecimento de macromoléculas mais complexas com capacidade auto-replicante e o surgimento da vida. No entanto, o estágio seguinte, ao contrário dos outros, predomina a análise em modelos matemáticos de evolução química. Entretanto, a descoberta de atividade hidrolítica autocatalítica em determinados tipos de ácido ribonucleico (ARN) reforçou a ideia de que ácidos nucleicos, ou análogos destes compostos, tenham apresentado atividades auto-replicantes na ausência de proteínas no passado.
2. SÍNTESE DE BIOMOLÉCULAS EM CONDIÇÕES PRIMITIVAS

Stanley L. Miller9,10 foi o primeiro a mostrar a possibilidade de que compostos orgânicos poderiam ser formados a partir de uma mistura de gases componentes da hipotética atmosfera primitiva de Oparin-Urey e de descargas elétricas, postuladas como uma importante fonte energética do passado. Partindo de H₂, H₂O, NH₃ e CH₄, Miller obteve, nestas condições drásticas, aminoácidos e outros compostos como ácidos alifáticos, hdiroxícidos, adefe, cianeto e uréia. Deste momento em diante, inúmeras publicações começaram a aparecer sobre a formação de biomoléculas em possíveis condições pré-biôticas, utilizando como fonte energética, além das descargas elétricas, radiação ultravioleta, radiação ionizante, calor e ondas de choque11.

Tem sido enfatizado na literatura1,7, desde os primeiros trabalhos de Oparin9, que as sínteses de biomoléculas em condições primitivas sejam realizadas utilizando reagentes que já tenham sido previamente sintetizados em condições possivelmente pré-biôticas. Como exemplo, a síntese de adenosina trifosfato (ATP) a partir de etila-metallafera e adenosina, realizada por Ponnamperuma et al.12, foi muito criticada por Miller e Parr13, que sustiveram um composto que presumivelmente não existiu na Terra primitiva: o etila-metallafera. Este composto é sintetizado em condições muito diferentes daqueles que presumivelmente ocorreram no passado. Outro aspecto importante é que são formados nas sínteses primitivas outros compostos que não são encontrados na biosfera atual, sugerindo que ocorreu seleção durante a evolução química - de maneira análoga à seleção natural biológica14.

É postulado que os compostos orgânicos formados na Terra primitiva tenham se acumulado nos ambientes aquáticos do passado, dando origem a que foi denominado em 1929 por Haldane15 como “sopa primordial” e que posteriormente estes compostos teriam formado polímeros como proteínas e ácidos nucleicos através de reações de condensação.

Outra importante condição dos experimentos de química pré-biônica é a utilização de pHs próximos ao da neutralidade nos meios de incubação. Isto porque se postula que os pHs dos ambientes aquáticos do passado eram em torno de sete, sendo muito próximo do valor existente nos oceanos atuais.

Uma crítica muito severa aos primeiros trabalhos de síntese de compostos orgânicos em condições primitivas foi feita em 1960 por D. E. Hull15. Ele argumentou que a taxa de decomposição por radiação ultravioleta de compostos como a glicina seria muito superior às pequenas taxas de síntese observadas até então. Portanto estas moléculas não poderiam se acumular em concentrações suficientes para poderem sofrer posteriores transformações como, por exemplo, a oligomerização. Hull afirmou ainda que seria possível e importante que a evolução química tivesse tomado as direções propostas na literatura. Entretanto, John D. Bernal15 contra-argumentou as ideias de Hull, sugerindo que os produtos das sínteses primitivas não tinham permanecido todo o tempo nos locais de síntese, onde estariam sujeitos a danosa ação da radiação ultravioleta. Propôs que estes compostos ficariam protegidos em microambientes especiais, ou seja, adsorvidos na superfície de minerais como as argilas, que possivelmente estariam presentes nos ambientes aquáticos primitivos. Outra vantagem da adsorção seria o aumento da concentração dos compostos, favorecendo portanto as reações de síntese.

As ideias de Bernal15 estimularam esforços experimentais para demonstrar a possível relevância dos minerais para a evolução química, incluindo a hipótese de que poderiam apresentar atividade catalítica.

3. A IMPORTÂNCIA DA CATÁLISE HETEROGÊNEA PRIMITIVA

Na catalise heterogênea, da mesma forma que na homogênea, o papel do catalisador é reduzir a barreira energética de ativação e consequentemente aumentar a constante de velocidade das reações. Na catalise heterogênea o catalisador forma uma fase distinta na solução e a reação ocorre na interface entre a fase aquosa e a fase sólida, i.e., na superfície do catalisador. Outros tipos de interface também são estudados, como é o caso das interfaces sólido/gás e líquido/líquido. A catalis e heterogênea se processa basicamente em quatro etapas distintas16: 1) adsorção dos reagentes na superfície do catalisador; 2) ativação dos reagentes adsorvidos, 3) reação dos compostos ativados na interface e 4) desorção dos produtos da reação na superfície do catalisador. A velocidade de algumas destas etapas, como a de adsorção, pode ser muito pequena em relação às outras, tornando-se a etapa limitante do processo. Assim, as equações de velocidade são normalmente muito influenciadas pelas características da adsorção dos reagentes na superfície do catalisador.

Dentro do contexto da evolução química, o estudo da adsorção de biomoléculas em minerais tem servido de modelo para mecanismos primitivos de concentração17. No caso das argilas, foi calculado um aumento de 38 vezes na concentração de alanina, em pH 7,0, considerando apenas o volume existente nos espaços interlamelares do mineral montmorillonita de sódio. Incluindo a fração de aminoácidos fracionadamente adsorvidos, ou seja, ligados por forças físicas, o aumento foi de 14 vezes. Foi observado ainda que o aumento da concentração de nucleósidos (como a adenosina) em montmorillonita de zinco chegava até 3 ordens de grandeza17.

Em 1964, Stanley L. Miller e Michael Parris13 observaram a síntese de pirofosfato a partir de cianato e fosfato, com a formação de um postulado intermediário de alta energia, o carbamil-fosfato. Esta reação apresentou um aumento de rendimento de até duas ordens de grandeza quando o fosfato estava sedimentado na forma de hidroxiapatita ao invés de solúvel (Figura 1). O resultado de Miller e Parris deu partida à investigação experimental sobre o papel de minerais muito antigos e de larga distribuição geográfica na origem da vida. Basicamente a própria hidroxiapatita e as argilas, principalmente a illita, a caulinita e a montmorillonita, têm-se constituído em objeto de estudo de suas propriedades adsorptivas e catalíticas, que seriam capazes de favorecer a evolução química17.

![Figura 1](image-url)

Figura 1

A principal pergunta formulada pelos autores é se ocorre ou não significante aumento da síntese de biomoléculas a partir de precursores primitivos na presença de minerais, quando comparado com o rendimento na ausência destes. A resposta
positiva tem prevalecido para esta questão, principalmente na formação de biomônômeros. Outra questão importante se relaciona com o mecanismo das sínteses primitivas em sistemas heterogêneos.

3.1. Síntese de Biomônômeros

Chittlendon e Schwartz observaram a formação de bases nitrogenadas como a uracila a partir de ureia e β-alanina na presença de montmorillonita através de um processo que sintetiza primeiramente dihidouracila, que é posteriormente desidrogenada pela ação da radiação ultravioleta (Figura 2). A presença de minerais argilosos se mostraram como cruciais para promover esta síntese.

![Figura 2]

O trabalho de Steinman et al. mostrou que a formação de ATP a partir da adenosina difosfato (ADP), fosfato e dicianodiamida e a síntese de pirofosfato partindo de fosfato e dicianodiamida, à temperatura ambiente, também foram mais eficientes na presença de caulim. Da mesma forma houve a formação de 2',3'-AMP cíclico, em montmorillonita, a partir de adenosina monofosfato e derivados de cianeto. Esta síntese de 2',3'-AMP cíclico é dependente da adição do 3'-AMP na superfície mineral.

A síntese de compostos fosforilados como o pirofosfato (PF) e nucleotídeos tem sido também estudada na presença de fosfatos insolúveis. Neuman et al. observaram a fosforilação, por PF, de adenosina e de 5'-AMP catalisada por hidroxiapatita, em condição experimental apresentando pequeno teor de água (proveniente apenas da umidade do ar).

A formação de pirofosfato tem sido mostrada em reações de fosforilose envolvendo fosfatos da superfície de matriz insolúvel de Pi. Metal e moléculas de alta energia como o ATP e ADP, acetil-fosfato e fosfeno-lípido (Figura 3). O mecanismo proposto por Jencks para a formação de PF a partir de ATP e hidroxiapatita envolve a adição do composto fosforilado sobre os sítios positivos de cálcio da superfície mineral, seguido de uma ativação da molécula através da aproximação dos grupos fosfato do cristal e do ATP, redução da repulsão eletrostática, e transformação da “porção ADP” do composto em um grupo de saída adequado.

![Figura 3]

Dentre os trabalhos que estudaram a formação de aminoácidos na presença de minerais, podemos citar a observação feita pelo grupo de Egami de que a síntese desses compostos a partir de paraformaldeído e hidroxilamina era quantitativamente semelhante na presença ou na ausência de caulim. Observou-se ainda que ocorria redução dos níveis de síntese na presença de caulim ou de montmorillonita. Entretanto, a ligação de metais de transição na caulinita era capaz de ativar a síntese, o que não se observou com a montmorillonita ou com o caulim. Por outro lado, Shimoyama et al. mostraram que a formação de aminoácidos a partir de CH₄, N₂ e descargas elétricas era afetada quantitativamente, mas não qualitativamente, i.e., no tipo de aminoácidos formados, pela presença de montmorillonita. Observaram que o mineral promovia a metilação de intermediários de reação, resultando em maiores rendimentos de α-alanina, ácido aminobutírico e sarcosina quando comparado aos níveis encontrados na ausência da argila.

A formação de monossacarídeos, observada em 1967 por Gabel e Ponnamperruma a partir do refluxo de formaldeído na presença de alumina ou caulinita (Figura 4), foi proposta como dependente da estrutura octádrica da alumina, presente na caulinita. Esta estrutura seria responsável pela formação de um intermediário ativo, por remoção de prótons do formaldeído, necessário na síntese.

![Figura 4]

3.2. Formação de Biopolímeros

A formação de biopolímeros mediada por minerais corresponde a outro aspecto possivelmente importante para a evolução química. O papel dos minerais nas reações de oligomerização foi inicialmente proposto, em 1951, por Bernal e, e tem sido muito controversa com relação a reproduibilidade dos resultados experimentais.

A formação de peptideis em solução aquosa foi realizada em 1970 por Paecht-Horowitz et al. na presença de aminocíclado-adenilato (Figura 5) e montmorillonita em suspensão, num modelo análogo ao existente nos seres vivos atuais na síntese proteica. O mecanismo proposto para esta reação envolve primeiramente a adição dos substratos na argila e posterior ativação da molécula. Entretanto, apesar de este modelo ser apresentado aparentemente pre-biótico, a síntese primativa do aminocíclado-adenilato a partir de ATP, aminoácidos e mistura de montmorillonita e zeolitas mostrada por Paecht-Horowitz e Katchalsky não foi ainda confirmada. A síntese primativa de peptideis a partir de solução aquosa de aminoácidos, na ausência de agentes condensantes, compostos cuja hidrólise pode ser acoplada com reações de condensação, também não foi obtida ainda mesmo na presença de catalizador heterogêneo.

![Figura 5]
mostraram que a argila favorecia apenas o aparecimento de cadeias longas. Finalmente, a formação de oligonucleótidos a partir de um monômero ativado e hidroxipatita, observado por Schwartz e Orgel32 foi favorecido pela presença de um “molde” de Poli-U ou Poli-C. No entanto, o rendimento da síntese foi o mesmo na presença ou na ausência de hidroxipatita, ou de hidróxido de ferro.

A atual interpretação dos resultados de síntese de biopolímeros na presença de argilas é que, ao contrário do proposto para a formação de bionanômetros, estes minerais não apresentam atividade catalítica direta – apesar de favorecer a síntese em muitos casos. As argilas proporcionam um micro-ambiente mais favorável às sínteses por: 1) proteger os substratos contra a hidrólise, 2) concentrar os reagentes na superfície do mineral, e 3) conferir ordenamento estrutural a compostos em polimerização17. A presença de um substrato ativado como os aminoácidos-adenilato ou de agentes condensantes é requerida para reduzir a barreira energética das reações de condensação.

Outro tópico importante nas sínteses heterogêneas são os ciclos de desidratação e reidratação que promovem incremento significativo no rendimento das reações, e apresentam grande relevância no contexto da Terra primitiva24.

4. OS CICLOS DE DESIDRATAÇÃO E REIDRATAÇÃO

Tem sido proposto que ciclos naturais de desidratação e reidratação em ambientes aquáticos primitivos, como pequenos lagos e poças d’água, tenham desempenhado um importante papel na evolução química, inclusive no favorecimento de reações de polimerização24. Estes ciclos poderiam ser causados por: 1) variações diárias drásticas na temperatura de ambientes desérticos que influenciariam a unidade de poças, por evaporação e condensação de água33, ou 2) variações sazonais no volume aquoso de pequenos lagos, de ambientes não desérticos, por evaporação e precipitação chuvas34. Um terceiro tipo poderia se assemelhar aos ciclos de variação de volume existente nas salinas onde ocorre evaporação, e posterior reidratação pela ação das marés.

Atualmente é possível observar-se grandes flutuações diárias na temperatura de ambientes desérticos, sendo uma importante indicação da relevância pré-biótica dos ciclos de evaporação e reidratação, por condensação, em poças d’água35,36, Isto porque se postula que as temperaturas atuais não são muito diferentes das existentes no estágio evolutivo de formação dos biopolímeros35. Foram observadas no deserto de Sonora (Arizona) e no Vale da Morte (Califórnia) temperaturas diurnas de até 65°C e 75°C, respectivamente, seguidas de extremas quedas à noite36. No deserto da Namíbia foi medida uma diferença, num espaço de tempo de 26 horas, de 48°C (de 6 a 54°C)35. Em todos estes locais foram também observados ciclos de desidratação e reidratação em pequenas poças.

A evaporação parcial de lagos primitivos seria capaz de favorecer a adsorção de substratos de reações heterogêneas, e por conseguinte a formação de produtos. Isto aconteceria porque durante a secagem ocorre a concentração de solutos, um aumento na densidade de compostos adsorvidos em minerais por unidade de volume e um decréscimo no pH do meio7,34. Como muitas biomoléculas, como aminoácidos e bases nitrogenadas, se adsorvem nas argilas, preferencialmente em pHs mais ácidos, a diminuição do pH seria relevante em alguns processos de síntese7,37.

Outro aspecto importante dos ciclos de desidratação e reidratação está relacionado com a heterogeneidade da superfície das argilas, como a montmorillonita. Este mineral apresenta regiões hidrofílicas (região silicosa), hidrofóbicas (região de alumina), faces e arestas com diferentes propriedades elétricas e eletrostáticas, defeitos reticulares e possíveis substituições isomórficas34. Em 1978, Lahav et al.37 observaram a polimerização de glicina na presença de bentonita ou de caulinita, em meio apresentando ciclos de desidratação e reidratação e de temperatura. Nestas condições a quantidade total de glicina oligomerizada e o tamanho das cadeias era significativamente maior que na presença de argila e sob ciclos de temperatura apenas. Mostraram ainda que, na ausência do mineral, somente eram obtidos traços de diglicina. A importância dos ciclos de desidratação e reidratação nestas reações foi atribuída pelo grupo de Lahav a uma possível capacidade de redistribuir a população de moléculas adsorvidas durante a fase de reidratação. Com a heterogeneidade da superfície das argilas poderia existir vários tipos de sitios onde os aminoácidos poderiam se adsorver e reagir. Assim, de acordo com Lahav, durante a fase de reidratação os compostos adsorvidos em “sitios não efetivos” poderiam ser removidos para “sitios catalíticos”. Na próxima etapa de desidratação, a síntese se processaria com maior eficiência.

Lahav e Chang38 propuseram ainda que a evaporação de ambientes aquáticos primitivos seria responsável pela formação de sedimentos com capacidade adsorptiva. Este sistema é similar ao observado nas salinas. Estes sedimentos seriam formados pela precipitação de sais solúveis, como calcita, dolomita e gesso, em função do decréscimo contínuo do volume aquoso que, assim, causaria ultrapassagem dos valores de K10 para os diversos sais. A hipótese do possível papel dos sais solúveis na evolução química teve reforço com a observação de significativa adsorção de nucleotídeos e de oligonucleotídeos na superfície de sais de gesso39.

Assim, partindo-se de dados experimentais, pode-se inferir que os ciclos de desidratação e reidratação foram relevantes, na evolução química: 1) na ausência de minerais, pelo simples aumento da concentração dos reagentes, 2) na presença de superfícies previamente formadas24 ou 3) na formação de sedimentos adsorptivos39. Entretanto, uma forma alternativa de estudar estes ciclos foi proposta por Hermès-Lima e Vieyra em 198925. Seria através da simulação do estágio de desidratação pela substituição de parte da água do meio (até 80% do volume) por dimetil sulfúxido (DMSO). Este meio constitui-se ainda num modelo de condição experimental apresentando pequeno teor de água.

A progressiva substituição da água do meio por dimetil sulfúxido foi mostrada como sendo capaz de promover a precipitação de sais solúveis como o fosfato de magnésio24. Como se postula que o DMSO não participaria como intermediário na síntese de piriformato a partir de fosfoenolpiruvato e fosfato precipitado25, esta condição seria então competente para simular o efeito da desidratação sobre sais solúveis dos ambientes aquáticos primitivos. Este efeito do DMSO, um solvante dipolar e apróctico, sobre a solubilidade de íons, como os fosfatos, tem sido explicado pela sua capacidade de desolvolar anions40. O efeito da desolvatação, em sistemas homogêneos, tem sido também usado para explicar o aumento da velocidade absoluta de reações de substituição nucleofílica de até 106 vezes quando a água do meio é substituída por solvente dipolar apróctico40.
5. A QUESTÃO DAS ALTAS TEMPERATURAS

Recentemente, Miller e Bada publicaram um trabalho mostrando que as altas temperaturas empregadas em muitos experimentos de síntese primitiva de biomoléculas e biopolímeros seriam desfavoráveis do ponto de vista da evolução química. Em altas temperaturas e estabilidade dos produtos destas sínteses, por longos períodos de tempo, é muito comprometida devido às pronunciadas taxas de decomposição, principalmente por hidrólise. Portanto, estas biomoléculas não poderiam se acumular na postulada “sopa primordial”.

Assim, as fontes hidrotermais submarinas que têm sido consideradas como sítios ideais para a evolução química, devendo a grande variedade e disponibilidade de solutos inorgânicos, não seria o lugar mais adequado para o aparecimento das primeiras formas de vida devido às altas temperaturas ali presentes (em torno de 250°C, com pressões superiores a 300 atm)⁴¹. Entretanto, seria possível que a presença de determinados minerais nestas fontes hidrotermais, minerais com significativa capacidade adsorptiva para biomoléculas, poderiam proteger os compostos recém sintetizados da ação destrutiva das altas temperaturas? Não seria surpresa que a procura das respostas para esta pergunta coloque em evidência um novo campo de estudos de catálise heterogênea primitiva.

AGRADECIMENTOS

Sou grato aos amigos que contribuíram com importantes sugestões: Prof. Adalberto Vieyra, Tatiana Coelho-Sampaio (UFRJ), Frederico Queirós-Filho (UERJ), Virgínia E. Gilio, Marcelo Christoff e Prof. Etelvino J. H. Bechara (USP). Este trabalho foi financiado pelo FINEP e CNPq (financiamento concedido ao Prof. Adalberto Vieyra) e pela Bolsa de Mestrado do CNPq.

Sou especialmente grato às sugestões e comentários dos dois revisores anônimos da revista.

REFERÊNCIAS