ARTIGO

NOVAS TÉCNICAS DE RMN E OS DESLOCAMENTOS QUÍMICOS DOS ÁTOMOS DE 1H E 13C DA ISOFLAVANA DUARTINA

Mário Geraldo de Carvalho e Raimundo Braz Filho*
Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23851-970, Seropédica - RJ

Received in 11/5/92; cópia revisada em 29/9/92.

The proton and carbon-13 nuclear magnetic resonance (NMR) spectra of 3',7-dihydroxy-2',4',8'-trimetoxyisoflavana (duartina) and its diacetate derivative have been unambiguously assigned by the homonuclear (1H x 1H-COSY) and heteronuclear (1H x 13C-COSY; modulated with 1J CH and 3J CH (n= 2 and 3, COLOC) 2D shift-correlated and NOE difference spectra.

Keywords: 1H and 13C NMR techniques; duartin; isoflavan.

INTRODUÇÃO

A isoflavana duartina (1) foi isolada de Machaerium acutifolium, M. mucronulatum, M. opacum e M. villosum. A constituição desta substância foi deduzida com base na análise de dados espectrais1,3 e de produtos de degradação2 e confirmada por síntese2,4. A configuração absoluta 3S foi definida por dispersão ótica rotatória (ORD)5,6. As novas técnicas de RMN atualmente disponíveis através de equipamentos modernos teriam facilitado esta tarefa. Este trabalho descreve resultados que permitiram a completa atribuição dos deslocamentos químicos dos átomos de 1H e 13C deste produto natural (1) e de seu derivado diacetilato (1a). Os dados obtidos eliminaram poucas dúvidas, impostas pelas dificuldades enfrentadas com sabedoria científica quando os químicos ainda não dispunham destas novas técnicas, e demonstram como a ressonância magnética nuclear, oferecendo novas dimensões unidimensionais e bidimensionais (2D) constitui um dos métodos mais eficientes na elucidação estrutural de substâncias orgânicas naturais ou sintéticas. Utilizaram-se as técnicas DEPT (Distortionless Enhancement by Polarization Transfer), 1H x 1H-COSY [Correlation Spectroscopy], correlação espectroscópica homonuclear bidimensional (2D) de hidrogênio e hidrogênio (1H x 1H), 1H x 13C-COSY [correlação espectroscópica heteronuclear bidimensional (2D) de hidrogênio e carbono-13 (1H x 13C) através de uma ligação (1JCH) e a longa distância [duas (2JCH) e três (3JCH) ligações (COLOC=Correlation spectroscopy via Long-range Couplings) e NOE (Nuclear Overhauser Effect) por subtração de espectros7,8. Os espectros DEPT permitem reconhecer os sinais correspondentes a carbons primários (Ω=90°, pulso de 90° na modulação de 1H e aparecimento somente de sinais de CH), secundários e terciários (Ω=135°, aparecimento dos sinais de CH e CH2 em fase oposta dos de CH3, que após a subtração dos sinais de CH obtidos com Ω=90° forneceu os números de CH, CH2 e CH3). Os sinais de carbonos quaternários foram obtidos pela diferença entre os sinais dos espectros totalmente desacoplados (todos os sinais dos átomos de carbono como singlets) e os espectros modulados pela interação entre 1H-13C (1JCH) para distinção entre os sinais CH, CH2 e CH3 (Ω=90° e 135°). As interações spin-spin entre os átomos de hidrogênio e entre os átomos de hidrogênio e carbono-13 foram reveladas pelas experiências bidimensionais de correlação homonuclear (1H x 1H-COSY) e heteronuclear (1H x 13C: 1JCH e 3JCH e 2JCH) respectivamente. Os NOEs foram obtidos por diferença espectral, subtraindo-se os espectros registrados com irradição nas frequências de absorção de átomos de hidrogênio daqueles obtidos com irradiação em região livre de absorção7.

RESULTADOS E DISCUSSÃO

Os espectros de RMN 1H de 1 e 1a revelaram os sinais de hidrogênios aromáticos com deslocamentos químicos muito próximos (Tabela 1). A interpretação destes espectros apoiou-se nas experiências homonuclear (1H x 1H-COSY), garantindo-se as interações de H-5 [1: δ 6.70 (d=J=8.3 Hz); 1a: δ 6.77 (d=J=8.3 Hz)] com H-6 [1: δ 6.50 (d=J=8.3 Hz); 1a: δ 6.56 (d=J=8.3 Hz)] e de H-5' [1: δ 6.58 (d=J=8.6 Hz); 1a: δ 6.71 (d=J=8.7 Hz)] com H-6' [1: δ 6.62 (d=J=8.6 Hz); 1a: δ 6.91 (d=J=8.7 Hz)], além dos acoplamientos geminados e vicinais do anel heterocíclico [1: δ 3.99 (t=J=10.4 Hz, H-2ax), 4.39 (dd=J=10.4 e J=3.0 Hz, H-2eq), 3.6-3.4 (m, H-3), 2.92 (dd=J=10.0 e 15.0 Hz, H-4ax), 2.92 (dd=J=15.0 e 5.0 Hz, H-4eq); 1a: δ 3.99 (t=J=10.4 Hz, H-2ax), 4.39 (dd=J=10.4 e 3.0 Hz, H-2eq), 3.6-3.4 (m, H-3), 3.1-2.8 (m, H-4ax e H-4eq)]. Como previsto, os sinais dos hidrogênios do anel heterocíclico permaneceram praticamente inalterados nos espectros de RMN 1H de 1 e 1a (Tabela 1). O maior deslocamento químico do H-4ax (δ 2.92) verificado na comparação com o do H-4eq (δ 2.82) pode ser justificado pela orientação destes átomos de hidrogênio em relação ao efeito anisotrópico do grupo arila sustentado pelo C-3.

A correlação do deslocamento químico 6.70 ppm com H-5' de 1a foi estabelecida inequivocamente pelo NOE observado (4.3%, no sinal deste hidrogênio por irradição dos hidrogênios do grupo metoxila (δ 3.79) localizado no C-4'. A atribuição do sinal com deslocamento químico 3.79 ppm para o grupo MeO-4' foi assegurada pelo espectro bidimensional de correlação heteronuclear (1H x 13C-COSY - UCH) que revelou a ligação destes átomos de hidrogênio com o carbono no representado pelo sinal em 56.02 ppm. Os dois sinais ressaltam os átomos de carbono metoxila (1: δ 60.89 e 60.84; 1a: δ 61.57 e 60.57) apresentam-se com deslocamentos químicos característicos de grupos metoxila localizados em posições estericamente impedidas (MeO-2' e MeO-8'), como demonstram claramente as substâncias modelo 2, 3 e 4'. Além disso, a interação de C-10 δ 121.45 (s) de 1a com o hidrogênio H-6 (δ 6.56) foi revelada pelo espectro bidimensional de correlação heteronuclear (1H x 13C-COSY) a longa distância, neste caso acoplamento através de três ligações (3JCH). A definição das posições de absorção do C-1 e do C-10, dois carbonos sp3 quarternários com menores valores de deslocalização químico (não estão ligados a átomos de oxigênio) tornou-se relativamente fácil quando se considerou o número

* Pesquisador Aposentado do CNPq.
1 \(R = H \)
2a \(R = \text{Ac} \)

\[
\begin{array}{c}
\text{MeO} \\
\text{OH}
\end{array}
\begin{array}{c}
\text{OMe}
\end{array}
\]

\(2 \)

\[
\begin{array}{c}
\text{MeO}
\end{array}
\begin{array}{c}
\text{OH}
\end{array}
\]

\(3 \)

\[
\begin{array}{c}
\text{MeO}
\end{array}
\begin{array}{c}
\text{OH}
\end{array}
\]

\(4 \)

\[
\begin{array}{c}
\text{MeO}
\end{array}
\begin{array}{c}
\text{OH}
\end{array}
\]

\(5 \)

\[
\begin{array}{c}
\text{MeO}
\end{array}
\begin{array}{c}
\text{OH}
\end{array}
\]

\(6 \)

\[
\begin{array}{c}
\text{MeO}
\end{array}
\begin{array}{c}
\text{OH}
\end{array}
\]

\(7 \)

\[
\begin{array}{c}
\text{MeO}
\end{array}
\begin{array}{c}
\text{OH}
\end{array}
\]

\(8 \)

\[
\begin{array}{c}
\text{MeO}
\end{array}
\begin{array}{c}
\text{OH}
\end{array}
\]

\(9 \)
Tabela 1. Dados de RMN 1H e 13C da duartina (1) e seu derivado acetilado (1a), registrados em CDCl$_3$ e TMS como referência interna.

<table>
<thead>
<tr>
<th>C</th>
<th>δ^a (ppm)</th>
<th>$\Delta \delta$ (Hz)</th>
<th>J_{CH} (Hz)</th>
<th>J_{HH} (Hz)</th>
<th>H-4</th>
<th>H-5</th>
<th>MeO-2' (7,3)</th>
<th>H-2eq, H-3</th>
<th>H-2eq, H-3</th>
<th>H-2eq, H-3</th>
<th>H-2eq, H-3</th>
<th>H-2eq, H-3</th>
<th>H-2eq, H-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (1)</td>
<td>70,41 (t)</td>
<td>3,99 ($J=10,4$, Hax)</td>
<td>4,37 ($dd=10,4$ e 3,0, Heq)</td>
<td>3,49 ($dd=10,4$ e 3,0, Heq)</td>
<td>H-4</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>70,20 (t)</td>
<td>3,99 ($J=10,4$, Hax)</td>
<td>4,39 ($dd=10,4$ e 3,0, Heq)</td>
<td>H-4</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (1)</td>
<td>31,48 (d)</td>
<td>3,6-3,4 (m)</td>
<td>2,02 ($dd=15,0$ e 5,0, Heq)</td>
<td>2,92 ($dd=15,0$ e 10,0, Hax)</td>
<td>H-4</td>
<td>H-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>31,09 (d)</td>
<td>3,6-3,4 (m)</td>
<td>H-4</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (1)</td>
<td>31,39</td>
<td>3,1-2,8 (m)</td>
<td>2,02 ($dd=15,0$ e 5,0, Heq)</td>
<td>2,92 ($dd=15,0$ e 10,0, Hax)</td>
<td>H-4</td>
<td>H-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>31,76 (t)</td>
<td>3,1-2,8 (m)</td>
<td>H-6</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (1)</td>
<td>124,15 (d)</td>
<td>6,72 (dJ=8,3)</td>
<td>123,72 (d)</td>
<td>6,77 (dJ=8,3)</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>124,55 (d)</td>
<td>6,50 (dJ=8,3)</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (1)</td>
<td>147,51 (s)</td>
<td>H-5</td>
<td>147,07 (s)</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>148,10 (s)</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 (1)</td>
<td>115,23 (s)</td>
<td>H-6</td>
<td>115,23 (s)</td>
<td>H-6</td>
<td>H-6</td>
<td>H-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>121,54 (s)</td>
<td>H-6</td>
<td>122,18 (s)</td>
<td>H-6</td>
<td>H-6</td>
<td>H-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 (1)</td>
<td>134,78 (s)</td>
<td>H-5</td>
<td>145,25 (s)</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>140,10 (s)</td>
<td>H-5</td>
<td>151,31 (s)</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 (1)</td>
<td>138,61 (s)</td>
<td>H-4</td>
<td>138,61 (s)</td>
<td>H-4</td>
<td>H-4</td>
<td>H-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>148,10 (s)</td>
<td>H-4</td>
<td>134,00 (s)</td>
<td>H-4</td>
<td>H-4</td>
<td>H-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 (1)</td>
<td>115,23 (s)</td>
<td>H-5</td>
<td>115,23 (s)</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>121,54 (s)</td>
<td>H-5</td>
<td>122,18 (s)</td>
<td>H-5</td>
<td>H-5</td>
<td>H-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1' (1)</td>
<td>127,18 (s)</td>
<td>MeO-4'</td>
<td>126,90 (s)</td>
<td>MeO-4'</td>
<td>MeO-4'</td>
<td>MeO-4' (4,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>126,90 (s)</td>
<td>MeO-4'</td>
<td>134,00 (s)</td>
<td>MeO-4'</td>
<td>MeO-4'</td>
<td>MeO-4' (4,3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2' (1)</td>
<td>145,25 (s)</td>
<td>MeO-2'</td>
<td>151,31 (s)</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>151,31 (s)</td>
<td>MeO-2'</td>
<td>138,61 (s)</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3' (1)</td>
<td>138,61 (s)</td>
<td>MeO-4'</td>
<td>138,61 (s)</td>
<td>MeO-4'</td>
<td>MeO-4'</td>
<td>MeO-4'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>148,10 (s)</td>
<td>MeO-4'</td>
<td>148,10 (s)</td>
<td>MeO-4'</td>
<td>MeO-4'</td>
<td>MeO-4'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4' (1)</td>
<td>146,64 (s)</td>
<td>MeO-2'</td>
<td>146,64 (s)</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>150,91 (s)</td>
<td>MeO-2'</td>
<td>150,91 (s)</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td>MeO-2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' (1)</td>
<td>106,44 (d)</td>
<td>6,58 (dJ=8,6)</td>
<td>106,44 (d)</td>
<td>6,58 (dJ=8,6)</td>
<td>H-6'</td>
<td>H-6'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>107,53 (d)</td>
<td>6,17 (dJ=8,7)</td>
<td>107,53 (d)</td>
<td>6,17 (dJ=8,7)</td>
<td>H-6'</td>
<td>H-6'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6' (1)</td>
<td>116,86 (s)</td>
<td>6,62 (dJ=8,6)</td>
<td>116,86 (s)</td>
<td>6,62 (dJ=8,6)</td>
<td>H-5'</td>
<td>H-5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>124,03 (d)</td>
<td>6,91 (dJ=8,7)</td>
<td>124,03 (d)</td>
<td>6,91 (dJ=8,7)</td>
<td>H-5'</td>
<td>H-5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeO-2' (1a)</td>
<td>60,89 (q)</td>
<td>3,87 (s)</td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>61,57 (q)</td>
<td>3,80 (s)</td>
<td></td>
</tr>
<tr>
<td>MeO-4' (1a)</td>
<td>56,10 (q)</td>
<td>3,86 (s)</td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>56,02 (q)</td>
<td>3,79 (s)</td>
<td></td>
</tr>
<tr>
<td>MeO-8 (1a)</td>
<td>60,84 (q)</td>
<td>3,88 (s)</td>
<td></td>
</tr>
<tr>
<td>(1a)</td>
<td>60,57 (q)</td>
<td>3,83 (s)</td>
<td></td>
</tr>
<tr>
<td>HO (1)</td>
<td>5,65 (s)</td>
<td>5,58 (s)</td>
<td></td>
</tr>
<tr>
<td>AcO (1a)</td>
<td>169,33 (s)</td>
<td>2,30 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20,60 (s)</td>
<td>2,30 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>168,45 (s)</td>
<td>2,30 (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20,42 (s)</td>
<td>2,30 (s)</td>
<td></td>
</tr>
</tbody>
</table>
ocupa posição meta em relação a este átomo de carbono. As modificações provocadas pela esterificação do grupo hidroxila fenólica nos deslocamentos químicos dos átomos de carbono orto, meta e para podem ser verificadas nos modelos 7 e 8. Assim, garantiu-se os deslocamentos químicos de C-10 e do H-6 e, consequentemente, de H-5' e H-6' (Tabela 1). As interações de C-10 (δ 121,45) com H-6 (δ 6,56 (d, J=8,3)) e de C-1' (δ 126,90) com H-5' (δ 6,71 (d, J=8,7)) observadas no espectro bidimensional de correlação heteronuclear a longa distância de hidrogênio e carbônio-13 (1H-13C-COLOC (J(CH) e J(CH)) de 1a confirmaram estas deduções. Após a definição dos deslocamentos químicos dos átomos de hidrogênio H-5, H-6, H-5' e H-6', foi possível estabelecer os deslocamentos químicos dos átomos de carbono correspondentes usando-se espectros bidimensionais de correlação heteronuclear de hidrogênio e carbônio-13 através de uma ligação (1H x 13C-COSY - J(CH) de 1 e 1a (Tabela 1). Estes resultados demonstraram claramente que os deslocamentos paramagnéticos de H-6 (Δδ=0,06 ppm) e H-6' (Δδ=0,29 ppm), deduzidos da comparação dos espectros de RMN 1H de 1 e 1a, são significativamente diferentes e contrariam a afirmação generalizada quando atribui efeito de acetilação maior para átomos de hidrogênio localizados em posição orto do que em para de sistemas aromáticos benzenoides. Obviamente, quando a carbonila do grupo acetoxila (OAc) encontra dificuldade estérica para assumir condição de coplanaridade com o anel aromático, os átomos de hidrogênio podem atingir a região de blindagem anisotrópica do C=O e, consequentemente, os deslocamentos paramagnéticos de hidrogênios localizados em posição orto tornam-se menores do que em para (efeito mesomérico sem ação anisotrópica de blindagem).

Para atribuir inequivocamente os deslocamentos químicos dos átomos de carbono quaternários restantes C-2', C-3', C-7, C-8 e C-9 utilizou-se o espectro de RMN bidimensional de correlação heteronuclear de hidrogênio e carbônio-13 a longa distância (1H x 13C-COSY - J(CH) , n=2 e 3) da daurina (1) e do derivado acetilado 1a (Tabela 1), observando-se no caso de 1a (e.g.) que o C-2' (δ 151,32) interage (J(CH) com o H-6' (δ 6,91), o C-3' (δ 134,00) com H-5' (δ 6,71; J(CH), o C-4' (δ 150,91) com o H-6' (δ 6,91; J(CH)) e com os hidrogênios do grupo metoxila (δ 3,79; J(CH)) sustentado pelo C-4', o C-7 (δ 142,13) com o H-5 (δ 6,77; J(CH)), o C-8 (δ 140,10) com o H-6 (δ 6,56; J(CH)) e com os hidrogênios de grupo metoxila (δ 3,83; J(CH)) ligado ao C-8 e o C-9 (δ 148,10) com o H-5 (δ 6,77; J(CH)). Neste espectro observou-se ainda a interação

Figura 1. Espectro bidimensional de correlação homonuclear de hidrogênio e hidrogênio (1H-1H-COSY) de 1a.

92
de C-2 (δ 70.20) com H-4 (δ 3.1-2.8; 1\(^{13}\)C\textsubscript{CH}) e os acoplamentos (J\textsubscript{CH}) dos carbonos carboxílicos dos grupos acetoxila que absorvem em δ 169.33 e 168.45 com os átomos de hidrogênio representados pelos sinais simples em δ 2.30 e 2.34, respectivamente (Tabela 1). Conhecendo-se a correlação hetronuclear de hidrogênio e carbono-13 através de uma ligação (J\textsubscript{CH}), revelada pela correspondente experiência bidimensional, foi possível definir as absorções dos átomos de carbono e hidrogênio dos dois grupos acetoxila (Tabela 1): δ 169.33 interage com os hidrogênios com deslocamento químico δ 2.30 (J\textsubscript{CH}) e o carbono metílico com δ 20.60 acopla (J\textsubscript{CH}) com hidrogênios com δ 2.30; δ 168.45 com δ 2.34 (J\textsubscript{CH}) e δ 20.42 com δ 2.34 (J\textsubscript{CH}).

As atribuições dos deslocamentos químicos dos átomos de carbono C-3 e C-4 de 1 [δ 31.48 (C-3) e 31.39 (C-4)] e de 1a [δ 31.09 (C-3) e 31.76 (C-4)] foram garantidos pelo espectro de RMN bidimensional de correlação hetronuclear de hidrogênio e carbono-13 através de uma ligação (J\textsubscript{CH}), além dos outros átomos de carbono hidrogenados.

As modificações significativas nos deslocamentos químicos dos átomos de carbono-13 aromáticos C-2', C-3', C-4', C-6', C-7, C-9 e C-10 de 1 reveladas pela comparação com os dados correspondentes do derivado acetilado 1a (Tabela 1) são consistentes com as alterações eletrônicas provocadas pela conversão dos grupos hidroxila em acetoxila: blindagem dos carbono ipso C-3' e C-7 (devido aos efeitos γ exercidos pelo átomo de oxigênio carbônico e pelo grupo metila da função acetoxila) e diminuição da capacidade de blindagem resultantes do efeito mesomérico do átomo de oxigênio sobre posições orto e para [meta praticamente inaliviada ou pequena blindagem (e.g. 7 e B)], devido à presença de grupo carbonila (OAc) retirador de elétrons (indutivo e mesomérico), atenuando a deslocalização dos elétrons não compartilhados do heteroátoo. A comparação dos deslocamentos químicos indicados nas substâncias modelo 7 e 8 demonstra claramente a influência destes efeitos eletrônicos.

O NOE 7.3% observado no sinal de H-3 [δ 3.6-3.4 (m)] quando se irradiou a frequência de absorção dos hidrogênios metoxílicos representados pelo sinal em 3.80 ppm (MeO-2') no espectro de RMN H1 de 1a serviu também para definir a posição ocupada pelo grupo, além de apontar para a conformação adotada pelo anel B em relação sistema hertocíclico (1b), já que o valor de J=10.4 Hz (J\textsubscript{H-H} gêmeo=J vicinal) observado no sinal em 3.99 ppm (1 e 1a) correspondente ao H-4 axial exige a localização de H-3 em posição axial (1b). O sinal em 3.80 ppm foi correlacionado com o carbono que absorve em 61.57 ppm no espectro H1 x C13-COSY - J\textsubscript{CH}.

Todos os dados descritos permitiram atribuir os deslocamentos químicos dos átomos de hidrogênio e carbono da duartina (1) e de seu derivado acetilado (1a) de forma definitiva (Tabela 1).

As Figuras 1 (H1 x H-COSY), 2 (H1 x C-COSY - J\textsubscript{CH}) e 3(H1 x C-COSY - J\textsubscript{CH}) (n=2,3), COLOC correspondem aos espectros bidimensionais de correlação homonuclear de H1 x H (Figura 1) e hetronuclear de H1 x C (Figuras 2, 3) de 1a, selecionados para a ilustração das novas experiências bidimensionais de RMN usadas neste artigo.

![Figura 2. Espectro bidimensional de correlação hetronuclear de hidrogênio e carbono 13 (H1 x C-COSY - J\textsubscript{CH}) de 1a.](image-url)
PARTE EXPERIMENTAL

Os espectros de RMN uni-(1D) e bidimensionais (2D) foram registrados em um espectrômetro Bruker AC-200, operando a 200 MHz para hidrogênio (RMN 1H) e 50,3 MHz para carbono-13 (RMN 13C) com pulsos de frequência e transformada de Fourier (FT). As amostras para análise foram dissolvidas em CDCl3 contendo TMS como referência interna e colocadas em tubo de 5 mm de diâmetro. As sequências de pulso utilizadas nas experiências bidimensionais estão contidas nos programas Bruker XHOCORR-AU, para correlação heteronuclear de hidrogênio e carbono-13 através de uma ligação (D3=0,5/1CH e D4=0,5/21CH, modulado com 1CH=140,0 Hz) e a longa distância (D3=0,5/1CH e D4=0,5/21CH, modulado com 1CH=7,0 Hz (n=2 e 3)), e COSY.AU, para correlação homonuclear (1H x 1H-COSY). Nas experiências unidimensionais de NOE (=Nuclear Overhauser Effect) usou-se o programa Bruker NOEDIFF.AU e de DEPT (=Distortionless Enhancement by Polarization Transfer) o DEPTVAR.AU (θ=90º e φ=135º).

AGRADECIMENTOS

Os autores agradecem as bolsas de pesquisa do CNPq e os auxílios recebidos do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), da Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES) e da Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). Agradecemos também ao “desconhecido” (não lembremos quem da equipe do Prof. Dr. Otto R. Gottlieb forneceu a amostra de duartina em 1976) e a Osmar Goulart Cunha pela digitação.

REFERÊNCIAS