Simulações de quatro mecanismos de reação de hidrodimerização de acrilonitrila produzindo adiponitrila, via galvanostática-macroeletrólise, foram realizadas. Foi possível a escolha do melhor mecanismo para cada condição analisada, comparado com dados experimentais fornecidos na literatura. Um exemplo de um mecanismo mais refinado foi empregado, obtendo resultados de melhor qualidade e estabilidade do sistema em comparação com outras propostas.

Keywords: hidrodimerização; adiponitrila; macroeletrólise.

INTRODUÇÃO

A adiponitrila é um composto intermediário na produção do Nylon 66, que, na forma de fibras, é largamente utilizado na confecção de roupas, tapetes, tecidos, pnes, etc. A sua fabricação através da hidrodimerização da acrilonitrila constitui o mais importante processo eletrossintético industrial. Atualmente, a produção anual é de 305 mil toneladas, provenientes de instalações industriais em Alabama, EUA (Monsanto Company), Nobeoka City, Japão (Asahi), Seal Sands, Reino Unido (BASF) e Campari, Brasil (RHODIA). O início da operação no Brasil em 1984, com a utilização da Asahi, e a capacidade instalada de 35000 ton/ano, coincidiu com a desativação de uma unidade de produção de adiponitrila via ácido adipíco, com capacidade de 19420 ton/ano, no município de Paulínia - SP.

A importância comercial da redução da acrilonitrila a adiponitrila foi levantada inicialmente por Bayer em 1949.

Knuyants e Vyazankin, em 1957, empregando suspensões de ácidos minerais fortes e amálgamas metálicas gerados eletrolíticamente, conseguiram produzir, com baixa rendimento, a adiponitrila a partir do monómero acrilonitrila. Foi proposto um mecanismo via radicais livres para o processo de dimerização.

Em 1963, Baizer divulgou suas conclusões sobre a investigação sistemática da eletrólise de soluções concentradas de acrilonitrila em solução aquosa de p-toluenossulfonato de tetraetilamonio, com eletrodos de chumbo ou mercúrio, em pH controlado. Foram obtidos altos rendimentos em adiponitrila e eficiências de corrente próximas a 100%. Quando a concentração de acrilonitrila era inferior a 10% ou havia presença de cátions de metais alcalinos no meio, quantidades crescentes de propionitrila, principal subproduto da síntese, eram formadas. Baizer, baseado nos dados da redução polargráfica da acrilonitrila a propionitrila obtidos por Platonova, propôs um mecanismo para a hidrodimerização que envolvia o recebimento de 2e pelo substrate. Esta redução ocorreria provavelmente em dois estágios, com o segundo elétron sendo adquirido num potencial mais negativo que o primeiro. Exceto quando houvesse carência de doadores de prótons no catódito, o radical-azoni, cuja carga negativa se deslocalizada através de um sistema de três átomos, reagiria com a água antes de receber o segundo elétron na posição β. Os carboníonos gerados poderiam atacar tanto a água quanto outra molécula polarizada de acrilonitrila. Os anions dimerizados, reagiriam com a água terminando o processo pela formação de adiponitrila e OH−.

Adar et al. em 1967 fizeram uma nova proposta mecanística para a hidrodimerização da acrilonitrila que inclui a formação de diânuo. Em 1972, Beck descreveu os efeitos dos parâmetros de operação sobre a formação da adiponitrila e discutiu detalhes mecanísticos do processo. Neste trabalho o autor propôs que o mecanismo de hidrodimerização passaria por uma primeira etapa eletroquímica de formação de um radical-azoni, o destino do radical-azoni, a protonação, a dimerização ou a reação com uma molécula do substrato determina diferentes rotas mecanísticas para a síntese da adiponitrila.

Haines, McConvey e Scott, em 1985, realizaram uma análise matemática utilizando dados publicados por Childs e Walters referentes à macroeletrólise-galvanostática da acrilonitrila para um processo tipo batelada. Na análise considera-se a formação dos principais subprodutos, 1,3,6-hexanotricarbonil e propionitrila, em reações envolvendo cinco etapas, e são propostas quatro rotas mecanísticas. No entanto, alguns pontos deste trabalho permanecem obscuros e merecem ser explorados de forma mais cuidadosa. A escolha dos parâmetros intrínsecos do processo não é clara, ou seja, os autores apresentam valores para as razões entre constantes de velocidade, sem mencionar o sistema de unidades adotado nem o critério em que foi baseada a escolha. O ajuste entre as curvas de simulação e os dados experimentais é, em alguns casos, de má qualidade. O artigo gera dúvidas, no que diz respeito a falta de adequação das curvas, se os resultados insatisfatórios têm como causa uma escolha infeliz de parâmetros ou se a falha está nos programas de simulação.

O presente trabalho tem como objetivos (i) estabelecer uma metodologia criteriosa da técnica de simulação para diferentes condições de eletrólise, e (ii) utilizar os resultados de simulação na seleção de modelos mecanísticos para processos eletroquímicos.

METODOLOGIA

Nas análises dos processos eletroquímicos adotou-se o tratamento fenomenológico baseado na confrontação das predições de modelos cinéticos teóricos com resultados experimentais de medidas macroscópicas, estes disponíveis na literatura.
As equações matemáticas obtidas a partir da análise cinética das reações químicas homogêneas e eletroquímicas heterogêneas são resolvidas através do método numérico de Runge-Kutta de 4ª ordem.16

No tratamento cinético das etapas eletroquímicas foi empregado o modelo tradicional de Tafel para as transferências eletroquímicas.17

Os programas de computador foram redigidos em linguagem BASIC, e as compilações foram executadas pelo software QUICKBASIC versão 4.5.18 Utilizou-se um computador pessoal do tipo PC, marca DTK BIOS. As rotilas gráficas foram plotadas com o software QUATRO-PRO e impressas em impressora EPSON 2000.

SISTEMA REACIONAL

Os dados experimentais aqui considerados são aqueles obtidos por Childs e Walters12 utilizando células não-divididas. Os eletrodos são de chumbo (99,9%), com espaçadores de neoprene para manter uma separação entre eles de 3 mm e expor uma área ativa de chumbo de 58,4 cm². Os materiais em contato com o eletrolito circulante são constituídos de vidro, teflon, aço inoxidável, neoprene e chumbo. O eletrolito consiste numa solução de 136 g de hidróxido de potássio P.A.(85%) em 1 l de água, parcialmente neutralizado com ácido fosfórico P.A.(85%) e 2,50 g de hidróxido de tetra-n-butilamônio. É feito um ajuste do pH com H3PO4 para 7,60 e a massa é corrigida com adição de água para 1,50 kg. A este eletrolito são adicionados 55,00 g de acrilonitrila, constituindo uma solução 3,54% em peso (C₅₉O₃).

O sistema reacional considerado é de tipo eletrolítico preparativo ou batelada nas seguintes condições: i) operação galvanostática, densidade de corrente de 2,2 kA/m² (I); ii) eletrolito mantido sob constante agitação mecânica durante a operação; iii) condições isotôrmicas, temperatura mantida entre 49° e 51°C.

As condições experimentais descritas são referidas ao longo do trabalho como condições de Childs e Walters.12

MODELOS DE REAÇÃO

Nos tratamentos teóricos não são consideradas as limitações sobre o transporte de massa. As reações elektroquímicas são regidas por uma cinética do tipo Tafel. As velocidades das reações são consideradas independentes das concentrações de H⁺ no meio, pois os resultados obtidos por Beck10, e por Childs e Walters12 indicam que a distribuição de produtos praticamente não é afetada quando o pH varia na faixa de 6 a 11. O volume da fase aquosa é suposto permanecer constante durante o processo e as reações são assumidas irreversíveis, rápidas, e ocorrendo numa região muito próxima ao eletrodo. São descritas a seguir quatro rotas mecânicas, que, de acordo com a proposta de Beck10, conduziriam à adiponitrila.

MODELO I:

(1) \[A \xrightarrow{e} B \]
(2) \[2 \text{H}^+ + B \xrightarrow{e} P \]
(3) \[A + \text{H}^+ \xrightarrow{e} C \]
(4) \[C + A + \text{H}^+ \xrightarrow{e} T \]
(5) \[C + \text{H}^+ \xrightarrow{e} D \]

onde: A = acrilonitrila: (CH₂=CHCN)
B = Intermediário radical-anion: (CH₂CHCN) ou (CH₂CHCN)

MODELO II:

(1) \[A \xrightarrow{e} B \]
(2) \[B + 2 \text{H}^+ \xrightarrow{e} P \]
(3) \[2 \text{B} \rightarrow C \]
(4) \[C + A + 2 \text{H}^+ \rightarrow T \]
(5) \[C + 2 \text{H}^+ \rightarrow D \]

MODELO III:

(1) \[A \xrightarrow{e} B \]
(2) \[B + 2 \text{H}^+ \xrightarrow{e} P \]
(3) \[B + \text{H}^+ \rightarrow M \]
(4) \[M + B \rightarrow C \]
(5) \[C + A + \text{H}^+ \rightarrow T \]
(6) \[C + \text{H}^+ \rightarrow D \]

Este modelo difere do anterior em relação a sequência em que ocorrem dimersização e protonação. Neste caso o radical-anion é protonado e posteriormente ocorre a dimersização.

MODELO IV:

(1) \[A + \text{H}^+ \xrightarrow{e} B \]
(2) \[B + \text{H}^+ \xrightarrow{e} P \]
(3) \[B + B \rightarrow D \]
(4) \[B + A \xrightarrow{(1)} C \]
(5) \[C + B \xrightarrow{(2)} T \]

Nesta proposta, (1) e (2) é uma etapa lenta, e supõe-se a formação de um intermediário radical-livre B, resultando da protonação do radical-anion inicial, com a três reações competitivas que conduzem à adiponitrila, ao trimero e à propionitrila.
Adotou-se o tratamento cinético dos modelos descrito por Haines e colaboradores\(^{11}\). Os parâmetros importantes na caracterização dos sistemas considerados são: \(I\), espessura da camada reacional (m); \(S\) área superficial do elodoro por unidade de volume (m\(^{-1}\)); \(t\) tempo de reação (s); \(C_n\), concentração da espécie \(i\) (mol.m\(^{-3}\)); \(k_p\), constante eletroquímica de velocidade da etapa \(j\) (m.s\(^{-1}\)); \(V\), volume da célula (m\(^3\)); \(N_p\), \(N_f\) e \(N_e\), número de mol de propionitrila, trimero e adiponitrila respectivamente; \(I\), densidade de corrente (A.m\(^2\)). Não serão considerados nas análises subprodutos tais como hidrogênio, compostos orgânicos, polímeros formados via mecanismo radicalar, produtos resultantes da hidrólise do grupo nitrila em meio ácido, \(\beta\)-hidroxipropionitrila e eter \(\beta\)-dicarboxiluconvenientes da cianoetilação da água em meio básico, por serem formados em quantidades muito pequenas.

ANÁLISE MATEMÁTICA

Os sistemas de equações diferenciais correspondentes aos diferentes modelos de reação tiveram solução numérica através do método de Runge-Kutta de 4\(^{1}\)\(^{\text{ordem}}\)\(^{16}\), mediante o processo iterativo sugerido por Haines et al.\(^{11}\). Numa primeira aproximação adotou-se inclinações de Tafel idênticas para as etapas eletroquímicas \((\beta_1 = \beta_2 = \beta_3)\), à igualdade entre os valores das constantes químicas \((k_1 = k_2 = k_3)\) e o valor da constante de velocidade para a primeira etapa eletroquímica como sendo:

\[
k_F = \frac{1}{F.C_A}\tag{1}.
\]

onde \(F\) é a constante de Faraday.

O valor numérico de partida para a constante \(k_1\), o termo químico da constante eletroquímica \(k_F\), foi estimado tomando como base a equação (1). Depois de inúmeras tentativas, chegou-se ao valor fixo de 3,5.10\(^{5}\) m.s\(^{-1}\) como o que conduz à melhor ajuste frente aos dados experimentais.

Para que a corrente se mantenha constante enquanto a acrilonitrila é consumida, faz-se necessário um aumento na voltagem aplicada ao sistema, o que acarreta variações nas constantes eletroquímicas \(k_F\). Partindo da equação de Tafel para as etapas eletroquímicas (1), (2) e (5) do modelo I, chega-se às relações:

\[
k_{F2} = k_2.(k_{F1}/k_1)^{\beta_2/\beta_1}\tag{2}
\]

\[
k_{F5} = k_5.(k_{F1}/k_1)^{\beta_5/\beta_1}\tag{3}
\]

que permitem, dentro do processo iterativo de determinação de \(k_F\), a atualização de \(k_F\) e \(k_p\) para cada passo do cálculo.

O primeiro valor melhorado de \(k_F\) é o calculado através da expressão do balanço de correntes.

A estimativa inicial de \(k_F\) (eq.1) é comparada com o valor calculado pelo balanço de correntes e passa a ser corrigida dentro do método iterativo até que a diferença entre os dois valores calculados seja menor que 0,1%. O novo valor de \(k_F\) é utilizado na determinação dos números de mol de adiponitrila (D), propionitrila (P) e do produto trimérico (T), para uma conversão de 50% de acrilonitrila, para os diversos modelos considerados.

RESULTADOS

Diagnóstico e Seleção do Mecanismo

A Fig. 1 mostra as curvas obtidas por simulação para cada um dos modelos e os dados experimentais relativos ao efeito da concentração inicial de acrilonitrila sobre a distribuição dos produtos.

Os resultados experimentais referentes a uma conversão de 50% do substrato, indicam, para baixas cargas iniciais de acrilonitrila, uma acentuada tendência à formação de propionitrila em detrimento do dímero. Baizier\(^{2}\), trabalhando com densidades de corrente de 3 a 12 A.dm\(^{-2}\), estabeleceu um limite mínimo de 10% para a concentração inicial de acrilonitrila, para que se obtivesse uma alta seleitividade na hidrodimineração. Beck\(^{10}\), Asahara et al.\(^{15}\) e outros autores mencionam baixos rendimentos para a dimineração nestas condições. Este comportamento provavelmente se deve a um excesso de transporte da acrilonitrila para a superfície do catodo facilitando o processo, energeticamente desfavorável, de recebimento de 2e\(^{-}\) por molécula\(^{10}\).

As curvas de simulação referentes à propionitrila e à adiponitrila, para o esquema I, apresentam intensa curvatura para concentrações inferiores a 2% de acrilonitrila, acompanhando claramente o comportamento experimental. Tal tendência não é observada para os outros esquemas mecanísticos. Haines et al.\(^{11}\) não obteram resultados satisfatórios para a simulação do processo nestas condições, para nenhum dos modelos propostos.

O aumento de concentração de acrilonitrila favorece a oligomerização, resultando numa queda no rendimento de propionitrila paralelamente a um aumento na formação de trimero. Este comportamento é reproduzido pelos quatro modelos considerados.

A Fig. 2 demonstra que a densidade de corrente não é um parâmetro tão crítico para o processo quanto a carga inicial de acrilonitrila. Estes resultados permitem descartar um mecanismo via radicais livres\(^{5}\). O mecanismo I é o único a apresentar um declínio na produção do dímero e favorecimento do trimérito para baixas densidades de corrente em conformidade com a expectativa experimental. A formação do trimérito é uma reação homogénea que se passa no seio da solução e é menos dependente da densidade de corrente na superfície do catodo.

Um aumento da densidade de corrente facilita as reações eletroquímicas heterogêneas na interface catodo/solução e o efeito é semelhante ao da diminuição na concentração do substrato sobre a distribuição de produtos, ou seja, um aumento na formação da propionitrila, as custas de uma redução dos ganhos em trimérito e dímero. Esta tendência pode ser observada para os modelos I e II. A concordância entre os dados experimentais e a curva de simulação na avaliação do efeito da densidade de corrente é especialmente importante para a utilização do modelo com fins industriais, pelo fato de implicar mais diretamente em fatores económicos.

Os esquemas III e IV apresentam concordâncias muito insatisfatórias com os dados experimentais, principalmente com relação ao efeito da concentração (Fig.1). Embora o modelo II dê resultados razoáveis, o esquema mecanístico I apresenta incontestavelmente um melhor ajuste teórico-experimental. Para baixos valores de Ic<1000 Am\(^{-2}\), o modelo I é o único a apresentar diminuição no rendimento de adiponitrila e favorecimento na formação de trimérito. Tal comportamento não tem sido descrito até agora na literatura\(^{10-15}\).

Escolha de Parâmetros

Numa primeira tentativa de definir as inclinações de Tafel para as etapas eletroquímicas do esquema I, foram simulados os efeitos da concentração inicial de acrilonitrila e da densidade de corrente para raizes \(\beta_2/\beta_3\) diferentes, conforme Fig. 3, já que a avaliação de diferentes raizes \(\beta_2/\beta_3\) conduz ao valor 1,0 como o mais adequado. Em relação à concentração inicial do substrato constatou-se um melhor ajuste teórico-experimental que o verificado na Fig. 1. No entanto, os melhores resultados relativos ao efeito de densidade de corrente, correspondem às raizes \((1,0;1,0)\) e \((1,5;1,0)\). Assim, preliminarmente, a escolha do mecanismo I com raizes de Tafel,
β₂/β₁ = 1,5 e β₅/β₁ = 1,0, foi considerada a mais acertada. A melhor qualidade dos resultados obtidos no presente trabalho em relação àqueles descritos por Haines et al.¹¹, para baixas concentrações de substrato, torna-se evidente pela observação da Fig.3. Por exemplo uma concentração inicial de acrilonitrila de 2% corresponde à formação de 14% (β₂/β₁ = 1,0), 16% (β₂/β₁ = 1,5) e 19% (β₂/β₁ = 2,0) de propionitrila enquanto que os valores correspondentes da literatura são respectivamente 6%, 11% e 15%. No que diz respeito a adiponitrila a correspondência seria de 85%, 83% e 79% para 92%, 85% e 80%, estes obtidos por Haines et al, a despeito do erro de escala presente na Fig.6 da referência [11].

Determinação das constantes de velocidade

Verifica-se que as constantes de velocidade das etapas químicas e eletroquímicas podem ser agrupadas na forma de razões do tipo μk₃/k₂ e k₅/μk₄. Estas relações são determinadas dentro do processo iterativo a partir de estimativas de μk₃/k₂ e k₅/μk₄, e da consideração k₁ = k₂ = k₃. As constantes eletroquímicas (k₂ e k₃) são então calculadas através das eqs. 2 e 3, utilizando o valor otimizado de k₃ correspondente.

A Fig.4 mostra as simulações dos efeitos dos parâmetros de operação sobre as curvas de distribuição, para o modelo I, empregando diferentes razões para as constantes de velocidade. Os valores μk₃/k₂ = 15 mol⁻¹ e k₅/μk₄ = 30 l/mol⁻¹ são os que correspondem a maior adequação da simulação com os dados experimentais de Childs e Walters. Em geral, observa-se que os resultados mostram-se extremamente sensíveis às condições de operação; assim, modificações drásticas e simultâneas nos valores de concentração inicial dos reagentes e de densidade de corrente, implicam sempre em uma nova estimativa dos parâmetros considerados. Esta severa dependência justifica-se pelo fato de “μ” não ser um parâmetro intrínseco do processo, sendo pelo contrário muito sensível às condições hidrodinâmicas do meio. A literatura omite esta dificuldade na parametrização¹¹.

Figura 1. Efeito da carga inicial de acrilonitrila sobre a distribuição de produtos (% Produtos) para os esquemas mecanísticos I, II, III e IV; I=2200 A.m⁻², β₂/β₁=1,0. Dados experimentais¹¹: □ adiponitrila (D), ■ propionitrila (P), ▲ trimerio (T).
Figura 2. Efeito da densidade de corrente (I) sobre a distribuição de produtos (% de Produtos) para os esquemas mecanísticos I, II, III e IV; C_{AO}=3,54%; \beta_d/\beta_1=1.0. Dados experimentais: \(\square \) adiponitrila (D), \(\blacksquare \) propionitrila (P), \(\blacktriangle \) trimero (T).

Reavaliação do modelo I

A adequação do mecanismo I, com relações de Tafel \(\beta_d/\beta_1 = 1.5 \) e \(\beta_2/\beta_1 = 1.0 \), para a descrição da eletrosíntese da adiponitrila foi testada para condições de operação diferentes das de Childs e Walters.

As Fig. 5a e b simulam os efeitos da densidade de corrente e da concentração inicial de acrilonitrila, respectivamente, sobre a distribuição de produtos, para as condições de Asahara et al.: \(I=365 \) A.m\(^{-2}\) e \(C_{AO}=40\% \). Os resultados são bastante razoáveis, mostrando assim a flexibilidade do modelo proposto.

Distribuição de produtos ao longo da eletrolise

Os resultados obtidos por meio de simulação para o efeito da concentração residual de acrilonitrila sobre a formação de produtos, ao longo da eletrolise, adotado o modelo mecanístico I, estão de acordo com os resultados experimentais de Childs e Walters e Asahara et al.. Na medida em que ocorre redução na concentração de substrato, cai a taxa de formação de monômero hidrogenado. Tal fato se deve à predominância da etapa eletroquímica (2) da reação, em relação à etapa química (3), como consequência do aumento do potencial do eletrôdo.

A utilização dos parâmetros intrínsecos, definidos para o processo batelada, em regime galvanostático, mostra-se inadequada quando aplicada às condições operacionais dos proces-
Figura 3. a) Efeito da concentração inicial de acrilonitrila (I=2200 A.m²) e da b) densidade de corrente (C₂₃H₂₃=3,54%) sobre a distribuição de produtos para o esquema I, com β/β₁=1, para diferentes razões β/β₁: (...)β/β₁=0,0; (---) β/β₁=1,5; (---) β/β₁=2,0. Dados experimentais: □ adiponitrila (D), ■ propionitrila (P) e △ trímero (T).

Figura 4. a) Efeito da concentração inicial de acrilonitrila (I=2200 Am²) e b) da densidade de corrente (C₂₃H₂₃=3,54%), sobre o rendimento de adiponitrila para o esquema mecânico I, para diferentes valores de μk/k₀ e k/k₀, A (μk/k₀ = 0,15; k/k₀ = 0,30), B (0,15 ; 30), C (0,15; 3000), D (15 ; 30), E (15 ; 30), F (15 ; 3000), G (1500 ; 0,30), H (1500 ; 30), I (1500 ; 3000).

sos industriais de produção de adiponitrila (reatores CSTR). A Fig. 7 permite comparar a evolução do rendimento em dimetro, ao longo da eletroliise, como função da quantidade de acrilonitrila remanescente no meio reacional para três condições de operação diferentes: Batelada (I=2200 A.m² e Cₐ₆=3,54%); CSTR₁(I=4500 A.m² e Cₐ₆=32,21%); e CSTR₂(I=1000 A.m² e Cₐ₆=20,24%).

Os resultados referentes às condições de Beck (CSTR₂) apresentam um desvio bastante mais intenso do que os de Danly (CSTR₁) em relação ao processo batelado. Tal constatação se deve a uma maior velocidade de fluxo eletrolítico praticada nas condições CSTR₁, tornando-a mais semelhante à condição batelada, em que os reagentes são vigorosamente homogeneizados. A inclusão de limitações hidrodinâmicas tópicas de condições CSTR (fluxo contínuo) permite uma modelagem mais fiel aos resultados referentes à eletrossíntese industrial da adiponitrila. Tais resultados serão objeto de futuras publicações.

CONCLUSÕES

A metodologia apresentada e desenvolvida no presente trabalho mostrou-se bastante satisfatória na seleção do mecanismo e na determinação dos parâmetros intrínsecos para a eletro-hidrodimerização da acrilonitrila, sob condições de macro-eletroliise galvanostática. A utilização desta abordagem na análise de outros sistemas eletroquímicos é de especial interesse devido à escassez e à brevidade da literatura que trata da simulação de processos eletro-orgânicos. A existência de grupos de pesquisadores brasileiros que dominem estas técnicas de simulação, utilizando recursos computacionais pouco sofisticados, é de grande importância para a emergente indústria nacional, pela economia, segurança e rapidez que apresentam frente aos ensaios tradicionais em reatores.

Analizando-se as ferramentas matemáticas empregadas pode-se concluir que a metodologia da simulação é de baixa complexidade, sendo assim acessível a profissionais sem for-
Figura 5. Efeito da densidade de corrente e da concentração inicial de acrilonitrila sobre a formação de produtos nas condições de Asahara et al.\(^2\), para uma conversão de 20%. Dados experimentais: □ adiponitrila (D), * subprodutos, ▼ propionitrila (P), ▲ trímero (T).

Figura 6. Efeito da concentração inicial de acrilonitrila (W% A inicial) sobre a distribuição de produtos (W% Produtos) nas condições de Beck\(^2\): I=2000 Am\(^–2\) e conversão de acrilonitrila = 50%.

Figura 7. Efeito da concentração residual de acrilonitrila (W% A residual) sobre os rendimentos em adiponitrila ao longo de uma eletrolise para as seguintes condições de operação: Batelada (I = 2200 A.m\(^–2\), \(C_0\) =3.54%); CSTR \((I = 4500 A.m\(^–2\), \(C_0\) =32.2%); e CSTR \((I = 1000 A.m\(^–2\), \(C_0\) =50.2%).

tentativas e erros, sendo que, quanto mais refinada a seleção dos parâmetros, principalmente no que diz respeito ao valor de partida para o termo químico da constante eletroquímica da etapa lenta, melhores concordâncias teórico-experimentais são observadas. Por outro lado, uma certa parametrização possui limites restritos de validade, não suportando mudanças drásticas e simultâneas nas condições operacionais. Esta limitação não é mencionada na literatura.

O modelo selecionado é razoavelmente versátil, pois, quando submetido a condições experimentais bastante diversificadas, apresentou sempre uma grande adequação.

AGRADECIMENTOS

A CAPES/PICD pelo apoio financeiro e ao Dr. Alain Dugueyt, da RHODIA S/A, pelas informações.

REFERÊNCIAS