Scientific measurements and especially measurements of amount of substance ("chemical" measurements), play a rapidly increasing role in modern society and form more and more the basis of important decisions and regulations (legal, medical, environmental, etc). Therefore, their reliability is of the utmost importance. Environmental measurements are becoming a particular case in point with the growing awareness of public and governments about the environment. These measurements will also have to be comparable across borders. Chemists must worry more about this reliability in order not to lose credibility and not to generate a loss of faith in chemistry in the nineties similar to the loss of faith in "the nuclear" in the past. In order to achieve both credibility and comparability, the fulfilment of the following requirements seems to be needed: a) express all results of (environmental) measurements in the SI unit for amount of substance, the mole; b) ensure their traceability to the mole, our SI unit for amount of substance; c) assess their real performance through regular participation in external (border-crossing) quality assessment programmes using undisclosed, real-life samples. Examples of highly unsatisfactory measurement performances will be discussed as well as ways which may contribute to improve the situation. The need for an ethical approach by (environmental) scientists will be briefly highlighted.

Keywords: comparability; traceability*; SI units; mole; quality assessment.

NOTA DOS TRADUÇÕES

A Química, Química Ambiental e Química Analítica Ambiental estão assumindo papel cada vez mais importante em nossa sociedade e devem ser considerados como uma parte importante em nossos futuros. O processo de transição para a medida SI (Sistema Internacional) é uma questão crucial para a comunidade científica. No entanto, a confiabilidade dessas medições é fundamental para garantir a precisão e a comparabilidade dos resultados. A participação em programas de avaliação externa (border-crossing) é uma maneira eficaz de avaliar e melhorar a qualidade destas medições.

Keywords: comparability; traceability*; SI units; mole; quality assessment.

Convém ressaltar que o modismo está levando a formulação de problemas ambientais pouco relevantes e dentro de visões parciais ou muito particulares. Muitas vezes são desenvolvidos "trabalhos de pesquisa" que nada mais são do que tarefas específicas dos órgãos oficiais de controle ambiental.

Outras vezes as ações da chamada Química Ambiental se limitam à área do laboratório para o desenvolvimento de metodologias. Desta forma, o resultado é tão somente um método de análise química em matrizes complexas sintéticas, que raramente correspondem à realidade.

Assim, as aplicações e implicações no sistema real, se apresentam como problemas alheios.

Para finalizar, este ponto salienta-se que a qualidade dos dados obtidos em sistemas reais, são fundamentais nas tomadas de decisões.

Pensa-se que a conferência referida pelo Prof. Dr. P. de Bièvre muito contribuirá para reflexões futuras sobre o referido assunto.
Em março de 1991, a revista “NEW SCIENTIST” relatou uma incômoda história para químicos analíticos - ambientais ou não, sobre embarque de uvas do Chile, América do Sul, que chegando às docas da Filadélfia foi barrado, com base na alegação da presença de cianeto feita pela FDA (Food Drugs Administration). Foi comprovado, por cientista da Universidade da Califórnia, que esta análise estava errada e os agricultores chilenos estraram com processo judicial contra o governo americano, exigindo $ 400 milhões em indenizações.

Se confirmada, essa história teria os seguintes componentes:
- análise imperfeita, gerando perda de credibilidade na atuação dos químicos analíticos ou,
- suspeitas sobre a falta de verificação imparcial feitas pelas autoridades, mas certamente,
- torna mais difícil o fluxo das mercadorias dos países do Sul (tão necessitados de moeda forte) para os países do hemisfério Norte que têm capacidade de pagar com este tipo de moeda. A referida moeda forte poderia ser usada para aquisição de “KNOW-HOW” e tecnologia, tão necessárias para o desenvolvimento dos países do Sul.

Na primeira fase do Programa Internacional de Avaliação de Medidas (IMEP-1) do CBNM (Central Bureau for Nuclear Measurements), foi solicitado a seis laboratórios de análise pertencentes a proeminentes institutos psiquiátricos, que determinassem Li em soro. Li parece ser excelente droga na cura das formas mais agravadas de depressões maníacas. Desde que, desejando-se ajudar o paciente sem contudo intoxicá-lo, algum controle sobre as doses de Li é desejável e, portanto, torna-se necessária capacitação para efetuar tal controle.

Os dados revelados foram pouco emocionantes, com respeito à concordância ou comparabilidade (Fig. 1).

Figura 1. Programa internacional de avaliação das medidas - IMEP - 1: Li em soro humano.

Tomando-se a média dos resultados encontrados, a situação seria pior: O valor certificado fornecido pelo programa IMEP-1, a posteriori, mostrou que todos os valores anteriores estavam errados (Fig. 1). A partir do fato de que todos os laboratórios prepararam suas próprias soluções de referência, uma solução desconhecida foi fornecida, e os resultados foram igualmente desastrosos (Fig. 2). Um dos labs. (Nr. 3) não pôde nem mesmo distinguir entre concentrações terapêuticas (≈ 1,0 mmol.L⁻¹) e tóxicas (≈ 1,50 mmol/L⁻¹). (Fig. 2)

Outro exemplo: IMEP-2 na determinação de Cd em polietileno (Fig. 3) revelou - uma vez mais - a falácia da remoção dos “resultados discordantes” em comparações inter-laboratoriais: Se o laboratório que apresentou este resultado discordante (Nr 4) for laboratório oficial, ou regulamentador ou laboratório da alfândega, como se poderá remover-lo como discordante?

A partir do momento que os analistas se orientam pelo conteúdo da lei que designou tal laboratório, devemos questionar como a lei foi criada.

Há claramente algo de errado no mundo das medidas e, portanto - obviamente - em decisões baseadas em tais medidas.

O fato preocupante é a impressão de falsabilidade que poderia resultar disto e difundir-se para o público em geral, bem como para o governo, nos casos onde decisões importantes podem ou devem ser tomadas tendo como base as medidas químicas.

Figura 2. Programa internacional de avaliação das medidas - IMEP - 1: Li em solução aquosa.

Figura 3. Programa internacional de avaliação das medidas - IMEP - 2: Cd em amostras de Polietileno.
A menos que futuramente os químicos estejam preparados com respostas satisfatórias para indicar e justificar às questões levantadas acerca desta (falta de) confiabilidade, a Química poderá sofrer novo abalo em sua imagem ainda nesta década. Outra poderosa razão para a degradação desta imagem e a crescente conscientização sobre o problema relacionado ao “lixo químico”.

A área de química ambiental deverá ser de particular interesse e preocupação para nós enquanto químicos. Então, com olho no futuro - mais especificamente, na “EUROPA 1993” - proponho examinar como poderíamos tentar absorver vários destes problemas que precisam ser solucionados.

Ao mesmo tempo, queremos ter certeza que o impulso da “EUROPA 1993” não nos jugue em armadilhas internacionais.

1. NOSSAS MEDIDAS DE QUANTIDADE SÃO CONVERSÍVEIS (RASTREÁVEIS)?

Se olharmos para medidas físicas de comprimento, tempo e massa, notaremos que elas foram organizadas no Sistema Internacional que consistentemente assegura serem elas conversíveis (rastreáveis) à unidade apropriada desse sistema. Esta conversão (rastreabilidade) é garantida pelos Institutos Nacionais de Referências (Fig 4), para que a Agência Internacional de Pesos e Medidas (BIPM) supervisione o sistema, sob os auspícios do CIPM, Comité Internacional de Pesos e Medidas.

Não existe nada similar no universo das medidas químicas. A conversibilidade (rastreabilidade) de medidas de quantidade de matéria, à unidade SI, o mol, deve ainda, ser estruturada. De todas as sete grandezas básicas e suas unidades (Fig. 5), a quantificação da “quantidade de matéria” e sua unidade SI, o “MOL”, é a única para a qual a conversibilidade (rastreabilidade) não tem sido adequadamente organizada.

Sob a urgente necessidade de comparabilidade das medidas químicas para “EUROPA 1993” a CIPM criou recentemente Grupo de Trabalho para pensar no problema, logicamente visando o cenário mundial. Este Grupo de Trabalho aparentemente já identificou alguns métodos químicos como primários: Espectrometria de massa por diluição de isótopos (IDMS), gravimetria, volumetria e coulometria, dos quais o IDMS parece ser o mais relevante para medidas ambientais. De fato, este método mostra algumas características extraordinárias para análise de grande extatidão para concentrações extremamente baixas (Figs. 6 e 7).

Por Convenção, as quantidades físicas estão organizadas em um sistema dimensional construído sobre sete quantidades fundamentais, onde cada uma das quais é considerada como tendo sua própria dimensão. Essas quantidades fundamentais e os símbolos utilizados para representá-las são os seguintes:

<table>
<thead>
<tr>
<th>Quantidade física</th>
<th>Símbolo para a quantidade</th>
<th>Nome da unidade no SI</th>
<th>Símbolo para unidade no SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento</td>
<td>l</td>
<td>Metro</td>
<td>m</td>
</tr>
<tr>
<td>Massa</td>
<td>m</td>
<td>Kilograma</td>
<td>kg</td>
</tr>
<tr>
<td>Tempo</td>
<td>t</td>
<td>Segundo</td>
<td>s</td>
</tr>
<tr>
<td>Corrente elétrica</td>
<td>I</td>
<td>Ampère</td>
<td>A</td>
</tr>
<tr>
<td>Temperatura</td>
<td>T</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Quantidade de matéria</td>
<td>n</td>
<td>Mol</td>
<td>mol</td>
</tr>
<tr>
<td>Intensidade</td>
<td>IV</td>
<td>Candela</td>
<td>cd</td>
</tr>
</tbody>
</table>

Figura 5. As quantidades e unidades do sistema SI.

NÚMERO DE QUANTIDADE DE ATOMOS

Figura 6. Por que espectrometria de massa de diluição do isótopos?

2. EMPREGAMOS A UNIDADE APROPRIADA?

Em 1971 a CIPM definiu a sétima grandeza para o Sistema Internacional como “quantidade de matéria” (símbolo “n”) gerando a sétima unidade SI: o “MOL”.

Definição:

O mol é a quantidade de matéria de um sistema que contém tantas entidades elementares quanto o número de átomos em 0,012 kg de 12C.

Quando o mol é usado, as entidades elementares devem ser identificadas, podendo ser átomos, moléculas, íons, elétrons, outras partículas ou grupos específicos de tais partículas (14th CGPM 1971).

Desta forma, todas as medidas de quantidade, chamadas “medidas químicas”, deveriam sempre ser expressas em “mol”. Esse, entretanto, ainda não é o caso.

QUÍMICA NOVA, 16(5) (1993)
Figura 7. O espectrômetro de massa (isótopo) (IMS): o equilíbrio químico moderno.

É conveniente salientar que:
1. a introdução da unidade mol é o reflexo do simples fato de que ela representa o número de átomos e moléculas que são quimicamente ativos e não massas ou pesos de substâncias químicas.
2. a grandezza física “quantidade de matéria” é de especial importância para os químicos. A quantidade de matéria e proporcional ao número de entidades elementares especificadas, sendo o fator de proporcionalidade o mesmo para todas as substâncias; sua recíproca é a CONSTANTE DE AVOGADRO. A grandezza física “quantidade de matéria” não deveria mais ser chamada “número de moles”, do mesmo modo que a grandezza física “massa” não deveria ser chamada número de kilogramas. O nome “quantidade de matéria” pode, não raro, ser abreviado pela simples palavra “quantidade”, particularmente em frases como “quantidade de concentração” e “quantidade de N₂”.

É um requisito básico para comparabilidade, que medidas sejam expressas na mesma unidade. Para medidas de quantidade ou “medidas químicas”, não há dúvida que deve ser o “MOL”.

Existe ainda a diretriz da Comunidade Europeia “aplicável em todos os Estados-Membros” que fixa o mol como unidade obrigatória para medidas de quantidade. Legalmente esse problema está resolvido. E, mesmo cientistas devem aplicar a norma.

3. ESTAMOS DOCUMENTANDO A REALIDADE COM EXATIDÃO?

Comparações interlaboratoriais têm sido entendidas e utilizadas como forma de comparar resultados de medições. Enquanto elas satisfizerem nossa curiosidade acadêmica, poderiam ser estatisticamente tratadas e nos dar idéia sobre margens das discrepâncias interlaboratoriais.

Chegou a hora de se avaliar qual critério específico deveria ser encontrado por tais comparações, no caso de medidas e concentrações que representaram as bases de importantes decisões.

Considere, por exemplo, o caso de certo programa interlaboratorial sobre o chumbo em repolhos, cujos resultados são mostrados na Fig. 8.

Existe, neste caso, o mérito de indicar que há problema, mas a associação dos resultados, com o conhecimento de que poderia haver algo como limite regulador superior a 0,5 mg.kg⁻¹ (unidade errada), não ajuda realmente na decisão se o alimento (repolho) está próprio para consumo.

* Expressão não usada em português.
IMEP - 3: Traços de Elementos em Águas Naturais B Valor Especificado: 0.127(5) μmol/kg 14.3(5) ng/ml.

O mais preocupante é que a auto-fiscalização dos laboratórios é um tanto independente da realidade como demonstra a Fig. 10: A auto-avaliação feita pelos laboratórios participantes deste programa comparativo, não mostrou nenhuma correlação com a realidade esperada.⁹

Evidentemente, a situação não é muito satisfatória.

Em muitos programas de comparação, a média dos valores obtidos pelos laboratórios participantes, ou simplesmente o valor "consensual" é tomado como o "mais próximo do valor verdadeiro" e o desempenho dos laboratórios é avaliado baseado nisto. Esta prática carece de embasamento científico e já demonstrada como arbitrária.

A VIII Conferência Euroanalítica em Edimburg (1993) terá seção sobre "Quem é o responsável (ROUND ROBINS*): a maneira errada de fazer!". Quando importantes decisões devem ser tomadas baseadas em medidas, queremos que essas sejam fundamentadas o mais possível na realidade física e química das substâncias em questão. Isso nem sempre é possível, especialmente em medições de amostras ambientais, onde problemas tais como homogeneidade nas matrizes podem criar enormes e adicionais barreiras. Mas quando essas medidas forem necessárias, esses requisitos devem ser preenchidos sempre que possível. Especificamente isso significa que: para a grandeza sob investigação (o que será medido) nas amostras-teste enviadas para o Programa Internacional de Avaliação de Medidas devem ser obtidos valores suficientemente adequados (dentro de intervalo prefixado) pelos diferentes métodos, e sendo os resultados necessariamente:

- expressos em unidade SI
- independentes da amostra-matriz
- comprovado ser livre de erros sistemáticos dentro da reprodutibilidade da medida.

* Petição de protesto, onde as assinaturas são colocadas em círculo, evitando indicar o primeiro signatário.

- três a dez vezes menos incerto que o necessário, para o propósito requerido.

Estou temeroso de que devamos também mudar um tanto drasticamente o objetivo das comparações interlaboratoriais: a principal razão da participação de vários laboratórios em programa de teste de confiabilidade NÃO é ter muitos resultados para "avaliação estatística" (dos laboratórios, do método,...) MAS sim que qualquer deles possa ser envolvido em problema causado pela discrepância nos seus resultados da medição da espécie de interesse (embarcador x destinatário, inspetor x inspecionado).

A eliminação dos dados discrepantes não tem sido meio artificial de reduzir a dispersão total, "dourando a pífula"? Nem tem sido concessão à estatística que necessita de grupos de dados mais homogêneos para que os métodos sejam considerados aplicáveis? No primeiro caso poderíamos estar enganando a nós mesmos. No último caso, será que deveríamos solicitar da Estatística e dos Estatísticos que desenvolvam métodos que sejam adaptáveis à realidade das medidas químicas ao invés dos químicos terem que adaptar a realidade de suas medidas aos modelos estatísticos existentes?

Tentativa de desenvolver método estatístico sem eliminar dados discrepantes foi publicada, porém totalmente ignorado.¹⁰ Esta abordagem fornece desvio-padrão realista para a dispersão interlaboratorial sem ter sido influenciada pelos dados discrepantes não rejeitados.

4. MATÉRIAS DE REFERÊNCIA OU MEDIDAS DE REFERÊNCIA?

Muitos de nós argumentam: precisamos de materiais de referência, mais e melhores materiais de referência. Na verdade, para calibrar nossas medidas, precisamos de tantos materiais de referência quantas forem as matrizes nas quais devemos fazer as medições.
Devemos perceber que será, inerentemente impossível preparar tantos materiais de referência. Isto exigiria muitos milihares de adição àqueles existentes e mesmo contando com cooperação mundial para a obtenção destes materiais, não os teríamos em número suficiente.

Mas, eventualmente, os Materiais de Referência nem sempre contribuem para a solução dos problemas de medições, pelos seguintes motivos:

a) seu "melhor valor" é conhecido (dentro de dada faixa de incerteza). Assim sendo os usuários às vezes têm cuidado muito especial para obter esse valor; eles tendem a trabalhar rumo a esse valor;
b) o material muitas vezes é "idealizado" e comparado a amostras de "vida-real". Entretanto ou é (muito) puro, ou não corresponde ao nível de concentração da espécie desconhecida ou não representa o material da "vida-real".

Portanto, o futuro desenvolvimento de métodos deveria ser direcionado para aqueles que são independentes da matriz e teriam o potencial para atuar como "Método de Referência" e nos habilitar a executar "Medidas de Referência". Nas amostras reais os valores obtidos através dessas Medidas de Referência poderiam então ser utilizados para calibrar outros métodos de campo mais rápidos e mais baratos. O conceito de Medidas de Referência pode bem se tornar tão importante no futuro quanto o conceito de Materiais de Referência.

5. IMPOR MÉTODOS E PROCEDIMENTOS? OU IMPOR A OBRIGAÇÃO DE PRODUTIR BONS RESULTADOS?

Como todos vocês do campo ambiental sabem, algumas autoridades têm-se ariscado a impor certos métodos ou instrumentos para obter valores de medidas necessários para o estabelecimento de regras normativas. Essa prática deveria ser abandonada, uma vez que é construída em cima de várias falácias.

É ilusório admitir que um determinado método usado para medir quantidade desconhecida em dado material, tenha repercutibilidade e exatidão constantes. Como decorrência da avaliação dos métodos qualquer um tem potencial para exatidão e repercutibilidade "ótimas" (que pode diferir de método para método) mas, quando utilizado na prática, está sujeito a erros sistemáticos variáveis, tornando-o assim, quanto a repercutibilidade e a exatidão, "não-ótimo" e "não-constante".

O que é mais importante ainda: imposição total desobriga a pessoa responsável pela medição de sua responsabilidade no resultado final, de declinar-lá, argumetando-se que se seguido exatidão às prescrições. Em outras palavras: alguém poderia dizer que a medição otimizada, mas por não ser "regulamentada", não pode ser certa, confiável e inteiro. Temo pelo fato de que a realidade na crua seja que resultados confiáveis a partir de medições, não possam ser "recomendados" da mesma forma que um "valor verdadeiro" - ou "o mais próximo da verdade" - não possam ser designados por decreto.

O corolário destas duas observações é, logicamente, que a própria comunidade analítica deve apresentar sistema de medidas consistentes e confiáveis, fazendo com isto que seus resultados após as medições sejam aceitos pela comunidade leiga. E a resposta a isto é: usar da mesma unidade, fazer medidas conversíveis (rastráveis) ao mol e indicar que o resultado pode não ser o "real valor", nem mesmo "o mais próximo do verdadeiro". Ao fornecer amplitude da incerteza em torno destes valores e afirmando conter o valor verdadeiro, qualquer um é capaz de se apoiar nestes dados numéricos.

Nestes tempos de análise cada vez mais automatizada, devemos pugnar por renovada responsabilidade em se tratando das medidas e, portanto, por compacto aumento de treinamento e educação sobre medidas químicas, em nossas escolas, laboratórios e universidades.

6. NÍVEIS DE CONCENTRAÇÃO REGULADORES OU DECISÓRIOS ESTÃO BEM ESTABELECIDOS?

Mais e mais químicos analíticos em geral e químicos ambientalistas em particular, se defrontam com regulamentações, fixando e quantidade máxima de determinadas substâncias em certos materiais. A dispersão de materiais tóxicos no meio ambiente é caso bastante específico onde tais regulamentos são necessários e onde limites superiores são indispensáveis. Parece que isto forçará os químicos analíticos ambientalistas a olhar com particular atenção para a confiabilidade de suas medições bem como para os valores em torno destes níveis.

Mas isso também parece denotar que as autoridades regulamentadoras deveriam - procurar documentar claramente o "Estado-da-Prática" e a execução de medidas significativas nos níveis decisórios de concentração, bem como em torno dos mesmos, - indicar margem de incerteza no nível decisório de concentração, ou alternativamente, - aceitar o princípio de que toda medida tem incerteza específica e que, por exemplo, o valor medido deve ser mais baixo do que o nível decisório de concentração, mesmo se a incerteza do valor medido contivesse este nível.

Pode ser útil mencionar que a IUPAC iniciou o exame deste problema em particular (Fig. 11).

UNIÃO INTERNACIONAL DE QUÍMICA PURA E APLICADA
Divisão de Química Inorgânica
Divisão de Química Clínica
Comissão de "Medidas de Isótopo-Específico como Referências"
"Termos de Referência"

1. Organizar Programas Internacionais de Medidas (IMEP) pela distribuição de amostras que possuem valores definidos/definitivos determinados por medidas de Isótopo-Específico.

2. Comparar graficamente várias técnicas de medidas através da publicação dos resultados do "Estado-da-Prática" da medida com "valores definidos" dispostos com o intuito de comparação.

3. Investigar/averigar o possível papel do IUPAC na interpretação dos níveis de concentração legalmente permitida para os elementos.

Figura 11. Interpretação científica da concentração legalmente permitida precisa ser investigada.

Tudo indica que medidas de quantidade ou "medidas químicas" não mostraram conclusivamente ser confiáveis e também não parecem ter um sistema internacional coerente para comprová-las. Elas não se aproximam muito do que se deve esperar de "medidas exatas" produzidas por "ciências exatas". Parece, de fato, como se alguém devesse antes falar por algum tempo sobre as "chamadas" medidas exatas. Outros autores concordam: "Existe considerável evidência na literatura de que poucos químicos analíticos prestam atenção na questão da confiabilidade dos resultados analíticos que eles produzem"11

Medidas ambientais - como medidas em geral - estão, irresistivelmente se tornando muito importantes em nosso mundo. A quantificação de quantidade de substância determinará mais e mais o uso desses materiais. A quantidade de substâncias tóxi-
cas ou úteis determinarão o que nós podemos - ou não podemos fazer - com o ar, água e solo. Ao mesmo tempo, a Química está enfrentando um dos mais sérios desafios - se não o mais sério - em sua história: sendo tratada pelo público e seus governantes como tendo a capacidade de poluir o meio-ambiente.

CONCLUSÕES

Existe a necessidade de se colocar em ordem nossas medi- das a fim de torná-las comparáveis entre os laboratórios de todo o mundo. Parece que, pelo menos, os seguintes pontos devem ser sério e rapidamente - apontados pela comunidade que produz medidas químicas:

1. Todas as medidas de quantidade (de matéria) - também chamadas “medidas químicas” - devem apresentar seus resultados na unidade internacional SI acordada e decretada: O MOL (ou suas frações).

“À Europa 1993” não deve adicionar qualquer outra contribuição à Europa internacional já existente.

2. Todas as medidas, mas especialmente aquelas próximas das importantes “concentrações decisórias”, tais como contêndos máximos, devem ser conversíveis (rastráveis) ao mol através de cadeia ininterrupta de calibrações, simbolicamente representadas na Fig. 12.

MEDIDA DA COMPARABILIDADE (RASTREABILIDADE) EM RELAÇÃO AO MOL

3. Comparações interlaboratoriais devem apresentar valor específico, conversível (rastrável) ao mol, apresentando incerteza na qual afirma-se conter o “valor-verdadeiro”, sendo tido isto baseado em fundamentos sólidos, evidentes e transparentes. Devem essencialmente abandonar a prática de tomar a média de certo número de resultados como a “maior aproxi- mação ao valor verdadeiro”, antes ou depois da eliminação dos “agentes de dispersão”, exceto onde - temporariamente - esta seja a única maneira de se proceder. E, mesmo quando o único caminho cientifico seja apresentar amplitude de valores observados no intervalo de um único valor.

4. E papel das autoridades decidir QUASIS medidas devem ser feitas. Não é para elas impor que as medições devem ser feitas, porque isto jogaria por terra a intrínseca responsabilidade que o laboratório teria pelos resultados das medições.

É, contudo, imperativo para as autoridades requererem a criação de mecanismos para avaliação imparcial dos resultados. 5. É de responsabilidade e papel dos analistas determinar COMO farão as medições. Eles são responsáveis pela escolha do método, dos instrumentos, procedimentos e ...pelos resultados.

Quem mais? 6. Programas externos de garantia imparcial de qualidade parecem ser o melhor caminho para se julgar o desempenho de medidas. Com eles em mãos, as autoridades podem estabelecer critério mínimo para cada problema onde medidas são necessárias, se as mesmas autoridades sentirem que o sejam. Em outras palavras, é para que elas decidam baseadas num valor-alvo numérico contendo a incerteza (total) da medida (ver Fig. 13). Estes valores-alvo podem, então, servir como guia útil para os analistas decidirem se o desempenho alcançou ou não o requisito “adequado para o propósito” ou se seu desenvolvimento complementar é necessário.

Figura 13. O “valor-alvo” para incerteza é o que é decidido a priori. Desempenho é o resultado experimental do que tiver sido realizado a posteriori.

7. Regras Regulamentadoras, Diretrizes da Comunidade Europeia, os máximos legais deveriam sempre que possível, ser decididos através de constatações imparciais e devidamente documentadas da real situação da prática em uso. Perdoem-me por usar linguagem tão direta neste discurso. Eu posso apenas expressar que meu intuito tem sido único e tão somente tentar localizar várias responsabilidades correta- mente. Sem identificação clara, qualquer tentativa de remedi- ar a situação das medidas químicas em geral e a situação das medidas ambientais em particular, poderia ser mau sucedida, já que seria errônea nos conceitos e, portanto, desastrosa nos resultados.

Não podemos permitir que isto aconteça. Isto violaria a ética elemento que se nos impõem bem como a qualquer ser humano responsável: cuidado cada vez maior em relação ao nosso ambiente ainda mais pelo ambiente que as próximas gerações herdarão de nós.

Isto também contribuiria para drástica perda de confiança nas medidas químicas e na tecnologia química. Não podemos permitir isto tampouco, visto que tanto medidas químicas quanto tecnologia química são absolutamente necessárias na desafiadora tarefa de deter a deterioração do nosso ambiente e - atrevemo-nos a dizer - a ainda mais desafiadora tarefa de iniciar e reconstrução.

Esta é uma tarefa onde Química Ambiente terá papel deci- sisivo. Estou certo de que este Simpósio em Química Analítica Ambiental aqui em Dortmund contribuiria uma vez mais para o esclarecimento do presente “status” do cumprimento desta missão, bem como formular metas para o futuro.

Portanto, eu desejou todo o sucesso possível.
AGRADECIMENTOS

Os tradutores agradecem à Dra. Iracema Faga da Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho - FUNDAÇENTRO - Ministério de Trabalho e da Administração - São Paulo, pelo fornecimento do glossário publicado pela Associação Brasileira de Controle de Qualidade.

REFERÊNCIAS