ESTUDO DA ADSORÇÃO DE FTALOCIANINA SOBRE COBRE

M. L. M. Rocco
Departamento de Físico-Química - Instituto de Química - UFRJ - Cidade Universitária - Ilha do Fundão - 21949-900
Rio de Janeiro - RJ

Received em 4/1/94; cópia revisada em 12/7/94

The unoccupied molecular orbitals of metal-free phthalocyanine (H$_2$PC) adsorbed on a copper surface have been investigated by inverse photoemission spectroscopy (IPES) and near-edge x-ray absorption fine structure (NEXAFS). The features observed in the experimental data were assigned by reference to molecular orbital calculations. Carbon and nitrogen 1s NEXAFS measurements of H$_2$PC adsorbed on a Cu(110) surface indicate that the phthalocyanine molecular plane is tilted away from the surface.

Keywords: phthalocyanine; inverse photoemission; X-ray absorption.

INTRODUÇÃO

Ftalocianinas (PC) são moléculas planares que apresentam propriedades únicas, tornando-as de grande interesse em diferentes áreas. Sua atividade electrocatalítica tem sido extensivamente estudada, especialmente a redução de oxigênio pelas ftalocianinas metálicas. Os seus cristais moleculares são semicondutores orgânicos, portanto adequados para dispositivos semicondutores. A estabilidade térmica e química destas moléculas favoreceu o seu uso como corantes e como condutores orgânicos na forma de filmes finos. Além disso, estas moléculas podem ser vistas como sistemas modelo para moléculas biológicas importantes, tais como hemoglobinina e clorofila. Para a compreensão destes diferentes fenômenos, é altamente desejável a investigação da estrutura eletônica destas moléculas. O estudo da estrutura eletônica ocupada destas moléculas foi realizado utilizando a técnica de fotoeletrôns. Recentemente, os orbitais moleculares não ocupados de filmes de ftalocianinas foram estudados através das técnicas de fotoemissão inversa e fotoabsorção.

Neste trabalho, apresentamos o estudo dos orbitais não ocupados da molécula de ftalocianina (H$_2$PC) adsorvida sobre uma superfície de Cu(100) através da espectrosopia de fotoemissão inversa (IPES). A técnica de NEXAFS foi também utilizada para se obter informações sobre a estrutura não ocupada deste sistema como também a orientação da molécula de H$_2$PC em relação à superfície de cobre.

PROCEDIMENTO EXPERIMENTAL

Os experimentos de IPES foram realizados em uma câmara de ultra-ávioo, com uma pressão da ordem de 10$^{-10}$ torr. O sistema de fotoemissão inversa detecta fotons de 9.5 eV de energia com uma resolução (canhão de elétrons e detector) de 0.35 eV. O cristal de Cu(100) foi montado sob um manipulador capaz de resfriar a amostra até 80 K usando nitrogênio líquido. A limpeza do cristal foi realizada através de ciclos de erosão iônica (Ar$^+$) e subsequente aquecimento da amostra, sendo checada posteriormente pela espectrosopia Auger (AES), difração de elétrons de baixa energia (LEED) e IPES. A molécula de H$_2$PC foi evaporada in situ através de um forno de sublimação sobre a superfície de cobre. A temperatura de sublimação foi controlada através de um termopar de Ni-Cr/Ni-AI. Uma microbalança de cristal de quarsivo (INFICON XTC) foi utilizada para monitorar o feixe molecular e a espessura do filme, que foi estimada em 2-3 monolamadas. A uniformidade do filme foi checada por LEED. Devido ao bombardeio de elétrons capaz de destruir rapidamente a amostra orgânica, os resultados de IPES foram obtidos em diferentes posições da amostra. Os espectros de IPES apresentados neste trabalho representam tipicamente a soma de dez varreduras.

As medidas de NEXAFS para H$_2$PC adsorvido sobre Cu(110) foram realizadas no laboratório de luz síncrono de Berlim (BESSY) usando um monocromador de rede plana, com uma resolução de 0.9 eV na banda 1s do carbono. Os espectros de NEXAFS na banda 1s do carbono e do nitrogênio foram medidos usando um detector de elétrons montado perpendicularmente à luz síncrona incidente, no modo de detecção conhecido como partial electron yield. O ângulo de incidência pode ser variado de incidência normal (θ=0°) à incidência rasa (θ=20°) com o vetor campo elétrico alinhado paralelo e quase perpendicular ao substrato, respectivamente.

RESULTADOS E DISCUSSÃO

IPES

O espectro de fotoemissão inversa de H$_2$PC adsorvido sobre uma superfície de Cu(100) é mostrado na figura 1 junto com o espectro da ftalocianina de cobre (CuPC). Para comparação, o espectro de IPES da superfície de cobre limpa é também mostrado nesta figura. No espectro da superfície de Cu(100), a estrutura que aparece próxima ao nível de Fermi (EF) é atribuída à um ressonância de superfície enquanto que a emissão abaixo do nível de vácuo (E$_{vac}$) a um estado de superfície do tipo potencial imagem. Devido à absorção das moléculas de ftalocianina, as emissões no espectro da superfície limpa desaparecem e observam-se três bandas induzidas pelo adsorção nos espectros da figura 1: dois picos (a) e (b) abaixo de E$_{vac}$ e uma banda larga (c) acima de E$_{vac}$. Para estes sistemas mediu-se uma variação da função de trabalho Δϕ de -0.5 eV, obtendo-se uma função de trabalho do sistema PC/Cu(100) de ϕ=4.1 eV ao se usar ϕ=4.63 eV para a superfície limpa de Cu(100).

Os espectros de IPES das moléculas de ftalocianina apresentadas na figura 1 são bastante semelhantes. Analogamente, os espectros de fotoeletrons destas moléculas também são bem semelhantes, já que a estrutura eletônica destas moléculas é dominada pelo esqueleto orgânico comum. Concentraremos
nossa discussão no caso da molécula de H$_2$PC. A estrutura eletrônica desta molécula foi calculada por diferentes autores15,16. Para os primeiros orbitais moleculares não ocupados de H$_2$PC, obtém-se três grupos de orbitais moleculares, cada qual contendo níveis de energia muito próximos de diferentes simetrias15,16. O primeiro grupo é composto de dois níveis com simetrias b$_2g$ e b$_3g$, separados em energia de aproximadamente 0.2 eV15. Para os outros grupos, a separação em energia é menor que 0.2 eV. Devido à baixa resolução experimental de 0.35 eV e o grande recobrimento destes orbitais, não é possível observar todos estes níveis experimentalmente. Da comparação com diferentes resultados teóricos, o pico (a) que aparece em 1.2 eV acima do nível de Fermi é atribuído aos orbitais antiligantes π*, de simetrias b$_2g$ e b$_3g$ no grupo de ponto desta molécula15,16. O pico (b), em 2.9 eV acima de E$_F$, provavelmente composto de cinco orbitais antiligantes π*. Estes são os orbitais a$_1g$, b$_{1u}$, b$_2g$, b$_{1g}$ e b$_{2g}$ segundo os resultados de Henriksson et al.16. De acordo com estes autores, o pico (c), em 5.1 eV acima de E$_F$, foi atribuído aos orbitais π a$_u$, b$_2g$ e b$_{2g}$. Boa concordância é obtida entre os resultados experimentais para H$_2$PC apresentados na figura 1 e os diferentes resultados teóricos.

Os resultados de IPEPS para H$_2$PC sobre Cu(100) são semelhantes aos obtidos para a adsorção sobre Ag(111)7. O espectro de IPEPS de H$_2$PC adsorvido sobre uma superfície de Ag(111) também mostra três bandas, que ocorrem em semelhantes posições em energia. A atribuição das estruturas observadas é a mesma que a discutida acima.

NEXAFS

Os espectros de fotoabsorção na borda K (1s) do nitrogênio para um filme de 2-3 camadas de H$_2$PC sobre Cu(110) são apresentados na figura 2 em função do ângulo θ, entre o vetor campo elétrico da radiação sôncrontrôn incidente e a normal à superfície. No caso de incidência rasteja (θ=20°), observam-se três picos (A,B,C) abaixo do potencial de ionização, que está localizado em 403.6 eV17. Esses picos são devidos a transições envolvendo a excitação de elétrons 1s do nitrogênio para orbitais não ocupados de simetria π da molécula de H$_2$PC. As bandas largas (D,E,F), que aparecem para maiores energias do fóton, correspondem à excitação de elétrons 1s para orbitais π*, também conhecidas como ressonâncias de forma. A intensidade das ressonâncias π* possui um máximo em θ=20°. Aumentando-se esse ângulo gradativamente, a intensidade das ressonâncias π* diminui, mas não desaparece completamente para incidência normal, o que seria uma indicação de que a molécula de H$_2$PC adere ao plano molecular paralelo à superfície de cobre. As ressonâncias σ*, como pode ser observado na figura 2, apresentam um comportamento oposto ao das ressonâncias π* ao se variar o ângulo de incidência da radiação.

A intensidade de uma transição de um elétron de camada interna para um orbital molecular não ocupado é dada por:

$$I \sim |\langle \tilde{E} \tilde{f} \tilde{M}_a \tilde{i} \rangle|^2$$ \hspace{1cm} (1)

onde \tilde{E} é o vetor campo elétrico da radiação incidente, \tilde{i} e \tilde{f} representam os estados inicial e final respectivamente e \tilde{M}_a é um componente cartesiano do dipolo elétrico associado à transição. No caso de uma transição permitida, o produto direto das representações irreduzíveis correspondentes a \tilde{i}, \tilde{f} e \tilde{M}_a deve ser igual, ou pelo menos conter, a representação totalmente simétrica do grupo de ponto da molécula. Para o grupo de ponto D$_{3h}$ da molécula de H$_2$PC, esta representação é \tilde{A}_g. Dessa forma, utilizando simples considerações de simetria e os resultados teóricos para a molécula de H$_2$PC, é possível obter as atribuições e a polarização das transições observadas na figura 2. Os resultados desta análise estão apresentados na tabela 1. Todas as transições observadas abaixo do potencial de ionização são polarizadas na direção z, ou seja, só podem ser excitadas pela componente z do vetor campo elétrico. A atribuição das bandas, que aparecem acima do potencial de ionização, não é trivial, já que elas representam transições a estados do fundo.

Dos resultados de NEXAFS para a borda 1s do nitrogênio apresentados na figura 2, é possível determinar a geometria de adsorção deste sistema, ou seja, calcular o ângulo α entre o plano molecular e a superfície19,20. A intensidade $I_\alpha(\theta, \alpha)$ de uma ressonância π para o caso de uma molécula poliatômica é dada por:

$$I_\alpha(\theta, \alpha) \sim P(\text{sen}^2\alpha \text{sen}^2\theta + 2\text{cos}^2\alpha \text{cos}^2\theta) + (1-P)\text{sen}^2\alpha$$ \hspace{1cm} (2)
onde P é o grau de polarização da luz sincrotron, que no nosso caso era igual a 87%. Usando para I\(\epsilon\) a intensidade da ressonância A da figura 2 para os diferentes ângulos \(\theta\), obtém-se, do melhor ajuste teórico aos dados experimentais segundo a equação (2), um valor de \(\alpha\) igual a 35°±10°.

Os espectros de NEXAFS na borda 1s do carbono para H\(_2\)PC adsorvido sobre uma superfície de Cu(110) são apresentados na figura 3 em função do ângulo \(\theta\). Novamente pode ser observado um forte efeito de polarização das ressonâncias \(\pi^*\) e \(\sigma^*\). Para \(\theta=20^\circ\) aparecem três picos (A,B,C) abaixo do potencial de ionização (289.5 eV\(^{13}\)), que corresponde às transições para orbitais de simetria \(\pi\). As bandas D e E, acima deste potencial, correspondem a transições para orbitais de simetria \(\sigma\). As atribuições e a polarização destas transições são apresentadas na tabela 2. No caso de incidência rasante (\(\theta=20^\circ\)), as ressonâncias \(\pi^*\) apresentam máxima intensidade. Aumentando-se o ângulo \(\theta\) até incidência normal (\(\theta=90^\circ\)), a intensidade destas ressonâncias diminui, enquanto se observa um aumento das ressonâncias \(\sigma^*\). Usando-se a equação (2) para calcular o ângulo \(\alpha\) e o mesmo procedimento de análise discutido acima, obtém-se como resultado novamente \(\alpha=35^\circ\) para a adsorção de H\(_2\)PC sobre uma superfície de Cu(110).

CONCLUSÃO

Os orbitais moleculares não ocupados da molécula de H\(_2\)PC adsorvida sobre uma superfície de cobre foram investigados através da espectroscopia de fotoemissão inversa e a espectroscopia de fotoabsorção utilizando radiação sincrotron. Boa concordância foi obtida entre os resultados experimentais para a molécula de H\(_2\)PC e os diferentes resultados teóricos. A técnica de NEXAFS foi também utilizada para se obter informações sobre a geometria de adsorção do sistema H\(_2\)PC/Cu(110). As medidas de NEXAFS na borda 1s do carbono e do nitrogênio de H\(_2\)PC adsorvido sobre uma superfície de Cu(110) indicam que o plano molecular desta molécula está inclinado 35° em relação à superfície de cobre. A geometria de adsorção obtida se assemelha à estrutura cristalina (monoclínica) da molécula de H\(_2\)PC.

AGRADECIMENTOS

Ao Prof. A. M. Bradshaw e aos Drs. K.-H. Frank e P. Yannoulis do Instituto Fritz-Haber da Sociedade Max-Planck pelas valiosas discussões no estudo da adsorção de ftalocianinas e ao BMFT (Bundesministerium für Forschung und Technologie) pelo apoio financeiro.

REFERÊNCIAS

Figura 3. Espectros de NEXAFS na borda K do carbono para H\(_2\)PC adsorvido sobre uma superfície de Cu(110).