EXPLORANDO AS PROPRIEDADES MOLECULARES DE SOLVENTES

Munir S. Skaf
Grupo de Simulação Molecular - Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto
Universidade de São Paulo - 14040-901 - Ribeirão Preto - SP

Fernando Luís B. da Silva
Grupo de Simulação Molecular - Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto
Universidade de São Paulo - 14040-901 - Ribeirão Preto - SP e Departamento de Química - Faculdade de Ciências
Universidade Estadual Paulista - 17033-360 - Bauru - SP

Results of molecular dynamics simulations on liquid models for tetrachlorocarbon, dimethylsulfoxide, and water, are presented in order to illustrate to a non-specialized reader the main structural and dynamic properties of non-polar, polar, and hydrogen-bonding liquids. Several pair distribution functions, as well as single-particle translational and reorientational time-correlation functions are interpreted from a semi-quantitative viewpoint. The main features of the local structures and single-particle dynamics for these liquids are compared against each other, stressing their similarities and differences as one goes from a non-polar to an associating fluid.

Keywords: molecular dynamics; local structures; single-particles dynamics.

INTRODUÇÃO

O estudo de sistemas moleculares é historicamente inseparável do nome de Boltzmann. Ele acreditava ser possível explicar os fenômenos físicos macroscópicos através da lei da mecânica aplicada aos movimentos moleculares. Baseado nestas idéias, ele desenvolveu a teoria cinética dos gases e estabeleceu os fundamentos da mecânica estatística moderna. Apesar de nos parecer extremamente natural, a teoria atomística defendida por Boltzmann, de que são os átomos e as moléculas os derradeiros responsáveis pelas propriedades macroscópicas da matéria, encontrou séria resistência por parte de ilustres cientistas no fim do século passado (vide o artigo de Antônio Videira neste fascículo). Hoje, a mecânica estatística é um dos temas centrais da química teórica, em particular da teoria de líquidos, onde se busca a compreensão detalhada das propriedades macroscópicas de meios materiais de interesse químico a partir de seus constituintes microscópicos, ou seja, em termos das interações, das características de movimento e das energias das moléculas, átomos e íons que constituem o sistema em questão.

No contexto da teoria de líquidos, há intensa atividade de pesquisa dirigida ao estudo das propriedades termodinâmicas, de estrutura e das propriedades dinâmicas de solventes puros, misturas e soluções eletrolíticas a partir de modelos realísticos de interação intermolecular. A natureza molecular das propriedades estruturais e dinâmicas dos líquidos, especialmente dos líquidos polares, desempenha um papel fundamental na compreensão de diversos fenômenos de interesse à química e à bioquímica. Para citar alguns exemplos: os detalhes da distribuição geométrica das moléculas do solvente (neste contexto, água) ao redor de proteínas e macromoléculas de interesse biológico influenciam as características de estabilização estrutural e propriedades conformacionais destas macromoléculas em solução; as propriedades estruturais e dinâmicas de solventes polares caracterizam estes solventes como meios de reações químicas dado que o perfil de energia livre associado à uma reação ocorrendo em meio polar, bem como o respectivo tempo de relaxação dos estados excitados dos produtos, são fortemente influenciados pelas moléculas do solvente ao redor do sítio de reação; as características moleculares de um líquido são também responsáveis pelo seu comportamento dielétrico, refletindo as flutuações da polarização do meio, que por sua vez determinam as propriedades espectroscópicas na região de microondas e do infravermelho longínquo; as propriedades de transporte de íons em solução também dependem de como os íons são solvatados pelas moléculas do solvente que os rodeiam. A compreensão destes, e outros, fenômenos é objeto de grande interesse experimental e teórico.

Neste artigo iremos discutir, buscando uma linguagem acessível ao leitor não especializado, as principais semelhanças e diferenças entre as propriedades moleulares de estrutura e dinâmica exibidas por um líquido apolar, um líquido polar e um líquido polar associativo, isto é, capaz de formar pontes de hidrogênio. Devido à complexidade das interações intermoleculares e à ausência de simetria espacial (cristalina) que caracterizam o estado líquido, o desenvolvimento de teorias analíticas ou semi-analíticas para o estudo destes sistemas tem sido restrito a modelos moleculares bastante simplificados. Por outro lado, o advento de computadores rápidos e sua acessibilidade no meio científico têm proporcionado um crescimento exponencial no uso e no desenvolvimento de técnicas numéricas de simulação que permitem ao cientista empregar modelos moleculares cada vez mais sofisticados e realistas para o estudo destes sistemas. Uma das técnicas de simulação mais bem sucedidas é a dinâmica molecular (MD), a qual consiste essencialmente de um experimento a nível microscópico realizado em computador, onde se tem o conhecimento e o controle compreensivos das posições e das velocidades das moléculas, átomos ou íons que compõem o sistema.

Em vista deste cenário, decidimos empregar simulações de DM em modelos relativamente realistas de interação molecular, afim de mostrar ao leitor algumas das propriedades mais relevantes que caracterizam os diversos tipos de solventes. Motivados por serem amplamente utilizados como solventes, nos escolhemos o tetraclororcarbono (CCl₄) como o solvente apolar, o dimetilsulfôxido (DMSO) como o solvente polar, e, naturalmente, a água como o solvente polar associativo. A seguir, faremos uma breve introdução à técnica de simulação e aos modelos moleculares que empregamos. Nas seções subsequentes discutiremos algumas propriedades estruturais e
dinâmicas destes sistemas. No final do artigo resumimos nossas principais conclusões.

MODELOS MOLECULARES E TÉCNICA DE SIMULAÇÃO

a. Modelos moleculares

Nos líquidos que consideramos aqui, cada molécula é representada pelo seu conjunto de átomos, mantendo fixos os comprimentos e ângulos de ligação que definem a geometria molecular. Por exemplo, cada molécula do CCl₄ é composta por um átomo de carbono mais os quatro átomos de cloro, dispostos na configuração tetraédrica característica das ligações covalentes do carbono. A interação entre um par de moléculas é dada pela soma das interações entre os átomos localizados em moléculas distintas. O potencial de interação entre um átomo α de uma molécula e um átomo β de outra molécula é dado pela expressão

\[V_{\alpha \beta}(r) = 4\varepsilon \left[(\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^{6} \right] + \frac{q_{\alpha} q_{\beta}}{4\pi\varepsilon_{0}r} \]

onde ε e σ são os parâmetros de Lenard-Jones entre o par de átomos α e β, qa e qβ as cargas atômicas parciais, e r a separação entre estes átomos. O primeiro termo da Eq. (1) representa as interações de curto alcance, isto é, as forças de van der Walls e as forças de dispersão de London. São estas interações, em conjunto com os comprimentos e ângulos de ligação, que definem o formato e o tamanho da molécula. A Figura 1 mostra os modelos moleculares do CCl₄, DMSO e água em termos de seus respectivos átomos. As áreas sombreadas representam, de forma esquemática, os raios σ das interações de curto alcance de cada átomo. O último termo na expressão de \(V_{\alpha \beta}(r) \) fornece as interações coulombianas, isto é, puramente eletrostáticas, entre as cargas parciais localizadas nos átomos. Nos modelos que usamos, apenas os átomos das moléculas de DMSO e água possuem cargas parciais. Os valores de ε, σ e q para a interação entre os pares de átomos das moléculas são em geral obtidos através de cálculos quânticos (ab initio ou semi-empíricos), os quais não iremos discutir aqui. As geometrias moleculares e os parâmetros de interação podem ser encontrados nas refs. 7 (CCl₄), 8 (modelo P2 para DMSO) e 9 (modelos SPC e TIP4P para água).

b. Princípios Básicos de DM

Simulações de DM são amplamente usadas em inúmeros problemas da química teórica onde há um elevado número de graus de liberdade do sistema. Em nosso caso específico, queremos simular o comportamento de um líquido contendo tipicamente \(10^{23} \) partículas. Este número de moléculas é tão grande que não conseguíamos sequer escrever as equações de movimento, muito menos encontrar suas soluções. Este impasse é resolvido da seguinte maneira\(^{10} \). Vamos imaginar uma região microscópica no seio do líquido, chamada caixa de simulação, contendo não mais que algumas centenas de moléculas, cuja densidade média é igual à densidade da amostra macroscópica. Como o sistema é homogêneo, podemos assumir que os movimentos moleculares no restante da amostra são réplicas daqueles que ocorrem dentro da caixa de simulação. Assim, impondo condições periódicas de contorno, podemos nos concentrar apenas nas interações e nos movimentos moleculares das partículas de moléculas que estão dentro da caixa de simulação. É importante mencionar que existem inúmeras situações onde este procedimento não é válido (por exemplo, nas simulações de sistemas não-homogêneos\(^{11} \)). Entretanto, resulta que para o cálculo de propriedades termodinâmicas, estruturais e algumas propriedades dinâmicas dos sistemas que consideramos aqui, é suficiente considerar apenas algumas centenas de moléculas (em nossas simulações usamos 108 moléculas). Ou seja, há correspondência termodinâmica entre uma amostra macroscópica do líquido e o sistema sendo simulado.

O método de DM consiste essencialmente em gerar um número suficientemente grande de configurações moleculares no espaço de fase do sistema, resolvendo-se as equações de movimento Newtonianas para cada partícula da caixa de simulação durante intervalos consecutivos de tempo. O procedimento é essencialmente o seguinte\(^{10} \); distribuímos inicialmente as moléculas em posições arbitrárias dentro da caixa e fornecemos velocidades iniciais de acordo com a distribuição de Maxwell-Boltzmann (este procedimento fixa uma temperatura média para o sistema. Em nossas simulações T=298 K). A partir destas posições e velocidades, calculamos as forças de interação atuando sobre cada átomo do sistema em um dado instante de tempo e determinamos as posições e velocidades em um instante posterior através da solução numérica das equações de movimento. A geometria molecular é mantida fixa por forças de vínculo intramoleculares. De posse das novas posições, calculamos novas forças (através das derivadas espaciais dos potenciais \(V_{\alpha \beta}(r) \)) e resolvemos novamente as equações de movimento para cada molécula. Este procedimento, denominado passo de simulação, é repetido milhares de vezes, onde a cada passo são guardadas as posições e velocidades atômicas das moléculas da caixa, para análises posteriores. Desta maneira geramos um ensemble microcanônico (numeração de moléculas, volume e energia total constantes) para o sistema simulado, a partir do qual podemos obter, inter alia, informações estruturais (disposição das moléculas relativas umas às outras) e a dinâmica das moléculas em tempos reais. O resultado de uma simulação de DM pode ser comparado a um filme cinematográfico, onde as moléculas são os protagonistas, o script o potencial de interação, e as cenas, gravadas em fotografias consecutivas, são as posições e velocidades armazenadas durante o curso da simulação. Cabe a nós, a audiência, apreciar e analisar o enredo.

PROPRIEDADES DE ESTRUTURA

Denominamos estrutura de um líquido a disposição média das moléculas relativas umas às outras. Uma das maneiras mais tradicionais e ilustrativas de se quantificar as distâncias e as orientações médias relativas entre as moléculas de um líquido é feita através das funções de distribuição envolvendo pares de átomos de moléculas distintas. A função de distribuição, \(g_{\alpha \beta}(r) \), entre o átomo α e β de um par de moléculas é definida por\(^{6,10} \)

\[g_{\alpha \beta}(r) = \frac{N_{\alpha \beta}(r)}{4\pi r^2 \Delta r \rho_{\beta}} \]
onde \(N\sigma_b(r) \) é o número médio de átomos \(\beta \) localizados na calota esférica \((r + \Delta r)\) centrada no átomo \(\alpha \) e \(\rho = N\nu/b \) é a densidade numérica média de átomos \(\beta \) do líquido. Em termos probabilísticos, \(g_b(r)\Delta r \) mede a probabilidade de se encontrar um átomo \(\beta \) a uma distância \(r \) do átomo \(\alpha \) (localizados em moléculas distintas). As funções \(g_b(r) \) são facilmente calculadas a partir das milhares de configurações geradas durante a simulação. Experimentalemente, estas funções podem ser determinadas usando uma combinação de técnicas de difração de raios-X, espalhamento de neutrons e difração de elétrons.

A Figura 2 mostra a função de distribuição \(g_{CC}(r) \) para os átomos de carbono do CCl\(_4\) líquido à temperatura ambiente, que obtemos de nossas simulações. Note que para \(r < 0.5\AA \), \(g_{CC}(r) = 0 \), indicando que não há sobreposição de moléculas. O primeiro pico (centrado em \(r_1 = 5.7\AA \)) nos dá informação sobre a distribuição das moléculas do CCl\(_4\) (o carbono ocupa o centro molecular) que são primeiras vizinhas, enquanto no segundo pico (centrado em \(r_2 = 11.3\AA \)) corresponde à distribuição média relativa das moléculas separadas por uma distância um pouco maior. As posições destes picos estão relacionadas aos raios das "camadas" que se formam no redor de qualquer molécula do líquido devido ao empacotamento das moléculas umas ao redor das outras. Isto está ilustrado pelo modelo bidimensional esquematizado na Figura 2. Note que na curva de \(g_{CC}(r) \), \(r_2 \) é aproximadamente o dobro de \(r_1 \), confirmando esta disposição em camadas concéntricas centradas em cada uma das moléculas do CCl\(_4\).

As larguras dos picos correspondem às variações das distâncias médias entre um átomo de carbono e seus vizinhos nas respectivas camadas, enquanto a área sob os picos dá o número médio de moléculas nestas camadas (vide Eq.2). Assim, integrando a curva \(r^2g_{CC}(r) \) na região correspondente ao primeiro pico, encontramos que, em média, cada molécula do CCl\(_4\) tem aproximadamente 12 primeiros vizinhos. Este número, juntamente com o fato de que \(r_2 = 2\ r_1 \), são típicos de líquidos apolares, onde as características estruturais são governadas pelas forças de curto alcance. Em outras palavras, a estrutura dos líquidos apolares nas imediações das moléculas se assemelha àquela formada por um grupo de esferas aproximadamente em contato. As orientações relativas médias das moléculas do CCl\(_4\) podem ser inferidas através das análises das funções \(g_{CC}(r) \) e \(g_{CC}(r) \), porém não iremos discutir-as aqui. A fim de determinarmos a estrutura de longo alcance, isto é, para maiores separações intermoleculares, seria necessário aumentar o tamanho da caixa de simulação, implicando maior número de moléculas a ser considerado, o que acarretaria um aumento considerável nos custos computacionais.

Para o DMSO temos seis funções de distribuição de pares atômicos: \(g_{OO}, g_{OS}, g_{OC}, g_{OS}, g_{OC} \) e \(g_{OO} \) (em nosso modelo, os grupos metílicos são representados pelos átomos de carbono). Uma caracterização mais completa da estrutura deste líquido pode ser feita através destas seis funções. Para os nossos propósitos entretanto, iremos nos concentrar apenas nas funções \(g_{OS}, g_{OC} \). A função \(g_{OS} \) (linha sólida na Figura 3) nos dá informações sobre as disposições médias das moléculas do DMSO, pois o enxofre está mais perto do centro da molécula que os demais átomos (poderíamos igualmente discutir nossos resultados em termos dos centros geométricos das moléculas). Como se pode observar, a função \(g_{OS} \) é similar àquela apresentada na Figura 2. O número de moléculas (átomos de enxofre) primeiros vizinhos é também aproximadamente 12, refletindo as características de empacotamento que discutimos acima. A disposição dos segundos vizinhos para o DMSO, entretanto, é quantitativamente diferente daquela apresentada pelo CCl\(_4\). Enquanto o primeiro pico de \(g_{OS} \) está centrado em \(r_1 = 5.4\AA \), o segundo pico está centrado em \(r_2 = 9.4\AA \), ou seja, o raio médio da segunda camada é menor que o dobro do raio da primeira. A diferença na estrutura a médio e longo alcance entre um líquido apolar e um líquido polar provém das forças coulombianas entre as cargas parciais da molécula polar. Este aspecto também se reflete na distribuição dos grupos metílicos (cargas parciais positivas) com respeito aos átomos de oxigênio (carga parcial negativa) no DMSO. A função \(g_{OC} \) (linha tracejada na Figura 3) exibe um primeiro pico bem definido e estreito e um segundo pico consideravelmente mais largo. Integrando a curva \(r^2g_{OC} \) de \(r = 0 \) até seu primeiro mínimo, encontramos que os átomos de oxigênio do DMSO estão em média rodeados por três grupos metílicos. Esta disposição indica um alinhamento parcial dos diplos de moléculas vizinhas.

Dos líquidos que consideramos aqui, os efeitos mais drásticos das forças coulombianas sobre as propriedades estruturais, são observados nas funções de distribuição para as moléculas água, das quais iremos analisar somente \(g_{OO} \) e \(g_{OS} \). A Figura 4 mostra as funções \(g_{OO} \) (linha sólida) e \(g_{OS} \) (linha tracejada), com seus picos e vales característicos. A disposição média das moléculas de água é melhor representada pela função \(g_{OO} \), pois o átomo de oxigênio ocupa aproximadamente o centro da molécula. O primeiro pico de \(g_{OO} \) é acentuadamente mais estreito e intenso do que os picos subsequentes, e também relativamente mais bem definido do que
aqueles discutidos acima. Os máximos do primeiro e segundo picos de g_{OH} aparecem em $r_1 = 2.8\,\text{Å}$ e $r_2 = 4.6\,\text{Å}$, respectivamente. O número médio de moléculas primeiras vizinhas é apenas 5, em contraste com os casos anteriores onde este número é próximo de 12. Uma rápida análise das posições do primeiro e segundo picos de g_{OH} indica a disposição tetraédrica esquematizada no desenho inserido na Figura 4. Denominando OO_1 a distância do oxigênio central aos oxigênios nos cantos do cubo e OO_2 a distância entre os oxigênios dos cantos, encontramos, por simples argumentos geométricos, que $OO_2 = 2(2/3)^{1/2} \times 1.047\,\text{Å}$. Identificando OO_1 com $r_1 = 2.8\,\text{Å}$, esta relação dará $OO_2 = 4.57\,\text{Å}$, que é aproximadamente igual a r_2. Entretanto, cabe ressaltar que estamos tratando da estrutura de um líquido a temperatura ambiente, e, portanto, este arranjo ordenado é apenas uma esquematização da estrutura da água para pequenas separações intermoleculares. Esta configuração tetraédrica se torna mais realista à medida que nos aproximamos do ponto de solidificação da água.

A função de distribuição g_{OH} também apresenta características particulares. Pode-se observar um pico estreito centrado em $1.8\,\text{Å}$, seguido de um pico um pouco mais intenso, centrado em $3.3\,\text{Å}$. A posição do primeiro pico de g_{OH} mostra que há uma aproximação substancial entre os átomos de hidrogênio (carga parcial positiva) e oxigênio (carga negativa) de um par de moléculas, indicando a formação de pontes de hidrogênio (linhas tracejadas ligando os átomos de hidrogênio e oxigênio no desenho na Figura 4). Calculando-se a área sob este pico, encontramos que há em média 4 pontes de hidrogênio por molécula (vide ref. 3 para uma discussão sobre as diversas definições de pontes de hidrogênio usadas em simulações de meios líquidos). O segundo pico de g_{OH} corresponde à disposição relativa entre o oxigênio da molécula central do desenho com os hidrogênios mais distantes das moléculas localizadas nos cantos do cubo (linhas pontilhadas no desenho na Figura 4). Estes pares não formam pontes de hidrogênio. Com se pode observar no desenho, para cada par do tipo O–H, isto é, formando uma ponte de hidrogênio, há vários pares do tipo O–O. Isto explica porque o segundo pico da função g_{OH} é mais intenso que o primeiro. A disposição dos demais hidrogênios nesta configuração tetraédrica (os quais não estão mostrados no desenho) pode ser inferida com o auxílio adicional da função g_{OH}.

Como indicam esses resultados, a alta anisotropia e a força das interações eletrostáticas exibidas pelas moléculas de água, resultam em uma estrutura de curto alcance, caracterizada pelas pontes de hidrogênio, bastante peculiar à água. Na verdade, as pontes de hidrogênio formam uma verdadeira rede ligando as moléculas de água no seio do líquido, conferindo ao sistema um elevado grau de correlação estrutural e médias e longas distâncias. A presença de pontes de hidrogênio é responsável pelas singularidades termométricas da água perto de seu ponto de solidificação e também implicam em propriedades dinâmicas bastante particulares que diferenciam água e outros líquidos associativos, dos demais líquidos polares. A seguir, iremos ilustrar algumas destas diferenças.

PROPRIEDADES DINÂMICAS

Existem várias maneiras de se caracterizar a dinâmica das moléculas em um líquido, incluindo sua dinâmica orientacional e translacional. O movimento translacional das moléculas pode ser investigado através das funções de autocorrelação temporal das velocidades atômicas, ou simplesmente, função de correlação de velocidades (FCV), definida por

$$FVC(t) = \left\{ \begin{array}{ll} \langle v_i(t_0) \cdot v_i(t_0 + t) \rangle \\ \langle |v_i(t_0)|^2 \rangle \end{array} \right.$$

onde $v_i(t)$ é o vetor velocidade de um sitio, j, de uma molécula no instante t. O sitio j pode ser o centro de massa ou qualquer um dos átomos da molécula. A função normalizada, FVC(t), é uma média, sobre todas as configurações, do produto escalar entre a velocidade do atomo j em um instante arbitrário t_0 e a velocidade deste mesmo atomo em um instante posterior $t_0 + t$. Para $t = 0$, FVC(t) = 1, para instantes posteriores a t_0 (isto é, $t > 0$), a função FVC(t) irá obrigatoriamente decair, pois as moléculas estão continuamente sob a ação das forças intermoleculares, alterando assim, a direção de suas velocidades (o leitor certamente se lembra que o produto escalar entre dois vetores é máximo quando eles estão paralelos). A taxa de decaimento da velocidade pode ser decair a maneira com a qual esta função decai, dependendo essencialmente das propriedades eletrostáticas da molécula, da temperatura e do campo de forças atuando sobre ela (isto é, das interações com as demais moléculas). Em um gás raro, o mecanismo é muito diferente, pois devido à baixa taxa de colisões, as moléculas de um gás podem percorrer grandes trajetos antes que suas velocidades sejam alteradas. Num outro extremo, a função FVC(t) de um sólido ideal, apresenta oscilações rápidas e regulares com amplitude máxima entre -1 e 1, refletindo as vibrações harmônicas dos átomos do sólido. Em um líquido, os movimentos moleculares são muito mais complexos, mesmo assim se pode inferir bastante sobre suas propriedades dinâmicas através das FVC(t).

A Figura 5 mostra as FVC(t) para os átomos de carbono do CCl₄ (linhas com traços e pontos), para os átomos de enxofre do DMSO (linha tracejada), bem como para os átomos de oxigênio (linha pontilhada) e hidrogênio (linha sólida) da água. As diferenças nas taxas de decaimento destas funções para diferentes pesos refletem as diferenças entre as massas das moléculas, sendo o CCl₄ mais pesado e a água mais leve, destes três líquidos. Para temperaturas intermediárias, as curvas correspondentes ao CCl₄ e ao DMSO apresentam características similares: sofrem um decaimento relativamente lento, tornando-se negativas a partir de 0.3 e 0.15 ps, respectivamente, convergindo lentamente para zero. Este comportamento é típico de líquidos densos, onde as colisões com as moléculas vizinhas revertem o sentido da velocidade.
da molécula em observação. Um aspecto comum entre estas curvas é que elas tendem a zero para tempos longos. Isto é consequência do fato de, devido às caóticas colisões moleculares, $v(t, t+t)$ fica praticamente não correlacionada com $v(t, t)$ para intervalos de tempo muito grandes. Entretanto, o estudo quantitativo do comportamento assimétrico das funções FCV(t) para longos tempos requer uma análise muito mais sofisticada do que aquela que podemos apresentar aqui.

A função FCV(t) dos átomos de oxigênio da água (curva pontilhada na Figura 5) decresce rapidamente para zero, tornando-se também negativa como as funções correspondentes ao CCl₄ e DMSO. Entretanto, ao contrário destes dois líquidos, a FCV(t) para os átomos de oxigênio da água apresenta vários períodos de oscilação. Estas oscilações podem ser qualitativamente interpretadas como vibrações de uma molécula de água presa na “gaiaola” criada pelas moléculas vizinhas. Em contraste com os outros líquidos, as pontes de hidrogênio fazem com que a “gaiaola” criada pelas moléculas da água seja muito mais rígida, forçando a molécula em seu interior a executar várias oscilações antes de ser finalmente liberada, difundindo pelo meio do líquido. As frequências características destes modos translacionais estão intimamente associadas com o aparecimento de uma banda de dipolo induzida na região entre 60 e 100 cm⁻¹ em diversas medidas espectroscópicas, incluindo o espectro de absorção no infravermelho longínquo e no espalhamento Raman de luz não-polarizada da água.

A FCV(t) para os átomos de hidrogênio da água (linha sólida na Figura 5) contém informações sobre o movimento translacional destes átomos. Como os átomos de hidrogênio estão longe do centro da molécula, esta função reflete também algumas características do movimento rotacional da molécula como um todo. Como mostra a Figura 5, a FCV(t) correspondente aos hidrogênios da água sofre um decaimento inicial extremamente rápido devido a leverage destes átomos, seguida de oscilações bem definidas e pronunciadas que persistem por centenas de femtosegundos (1 fs = 10⁻¹² ps). Este movimento oscilatório está associado às chamadas librações de um corpo rígido e refletem, aproximadamente, as oscilações da ligação O-H de uma molécula de água ao redor do centro de massa. Tal interpretação, porém, deve ser feita com cautela, pois o movimento translacional do centro de massa está implicitamente imbuído nesta FCV(t).

Por outro lado, podemos caracterizar melhor os movimentos rotacionais de uma molécula com o auxílio das funções de correlação orientacionais, C(t), definidas por

$$C(t) = \langle u(t_0) \cdot u(t_0 + t) \rangle$$

onde $u(t)$ é um vetor unitário que especifica a orientação de um eixo molecular no referencial do laboratório no instante t. O vetor $u(t)$ pode ser definido, por exemplo, ao longo de uma ligação molecular (e.g., C-Cl, O-S, O-H), ou ao longo do dipolo da molécula. É importante mencionar, entretanto, que estas funções não medem os movimentos moleculares puramente rotacionais, uma vez que em líquidos moleculares os movimentos orientacionais e translacionais das moléculas estão fortemente acoplados. Mesmo assim, o leitor poderá apreciar as principais diferenças entre os movimentos rotacionais de um líquido não-associativo e um líquido com pontes de hidrogênio através destas funções. Essas diferenças estão ilustradas na Figura 6, a qual mostra as funções C(t) para a ligação O-S do DMSO (linha tracejada) e para o dipolo da água (linha sólida). O decaimento inicial das correlações orientacionais do dipolo da água é mais acentuado do que para a ligação O-S do DMSO, devido ao fato dos momentos de inércia da água serem menores que os do DMSO. Logo após este primeiro decaimento (isto é, para t > 0.2 ps) a curva C(t) para o dipolo da água exibe oscilações amortecidas, enquanto a curva para o DMSO decaiu monotonamente. O leitor poderá compreender melhor a origem destas oscilações fazendo referência ao desenho inserido na Figura 4, onde cada ponte de hidrogênio (linhas tracejadas no desenho) atua como uma mola elástica que tenta restaurar a orientação da molécula central quando esta tenta efetuar uma rotação. Ou seja, o movimento libracional das moléculas de água é fruto da existência de forças restauradoras provenientes das pontes de hidrogênio. Esta dinâmica é característica de líquidos associativos, tais como a água e os álcoois, e não pode ser encontrada em outros líquidos polares. Para tempos maiores que 0.4 ps, as funções C(t) apresentam um decaimento do tipo exponencial que caracteriza os processos de difusão rotacional dos líquidos.

As transformadas de Fourier destas funções estão indiretamente associadas ao espectro de absorção de radiação na região de microondas e infravermelho longínquo (relaxação dielétrica). O movimento libracional exibido pela C(t) do dipolo da água ajuda a se ter um melhor entendimento do como um intenso banda de absorção centrada em 700 cm⁻¹. Esta dinâmica rotacional da água em curta escala temporal, é responsável também pelos rápido processos de relaxação exibidos por este solvente ao redor de cómodoras em solução, quando estas realizam reações de transferência intramolecular de carga via excitação externa por laser. Neste contexto, a água é um dos solventes mais rápidos da natureza.
CONCLUSÕES

Neste trabalho empregamos técnicas de simulação de DM em modelos realísticos de interação molecular, afim de mostrar ao leitor não-especializado na área, as principais diferenças estruturais e dinâmicas entre os solventes apolares, polares e associativos. Através das funções de distribuição de pares atômicos, ilustramos as propriedades básicas de estrutura a curto e médio alcances do CCl₄, DMSO e água. Mostramos que para o CCl₄, e em menor grau, para o DMSO, a estrutura do líquido para pequenas separações intermoleculares, são governadas essencialmente pelas propriedades de empaçamento das moléculas, isto é, pelas forças de curto alcance dadas pelas interações de Lennard-Jones. Em contraste, a água apresenta uma estrutura altamente anisotrópica devido às fortes atrações elestrostáticas, caracterizadas pelo aparecimento de pontes de hidrogênio.

Os principais aspectos das dinâmicas translacional e rotacional destes líquidos foram discutidos em termos das respectivas funções de correlação temporais. As origens das propriedades particulares da dinâmica das moléculas de água, foram interpretadas em termos das forças restauradoras provenientes das pontes de hidrogênio, em conexão com as propriedades estruturais obtidas. Alguns aspectos desta dinâmica em tópicos atuais de pesquisa foram brevemente mencionados.

Esperamos haver proporcionado ao leitor uma visão geral de como as técnicas de simulação de DM, aplicadas em modelos simples, podem fornecer informações detalhadas a respeito da estrutura e da dinâmica de sistemas tão complexos como os líquidos moleculares.

AGRADECIMENTOS

Gostaríamos de parabenizar a Comissão Editorial por esta edição especial em homenagem à Boltzmann e agradecer pela oportunidade de apresentar parte do nosso trabalho em teoria dos líquidos à comunidade química brasileira. Agradecemos a Aparecido Doniseti da Costa pela ajuda na confecção de algumas das figuras apresentadas. Pesquisa financiada pela FAPESP (94/0273-4).

REFERÊNCIAS

5. Impey, R. W.; em ref. 4.
15. Alder, B. J.; em ref. 4.

Publicação financiada pela FAPESP