Thermogravimetric results are influenced by a series of experimental factors, such as furnace heating rate and atmosphere, velocity of carrier gas, sample mass, etc. In this work a practical evaluation of these parameters are showed for calcium oxalate, with teaching objectives, considering that undergraduate text books discuss but do not show experimental details for these cases.

Keywords: thermogravimetric analysis; results evaluation; calcium oxalate decomposition.

INTRODUÇÃO

As técnicas termoanalíticas tem sido definidas como sendo métodos nos quais se mede a variação de uma determinada propriedade física de uma amostra em função do tempo ou da temperatura. Esta definição foi proposta por Mackenzie1 e aceita pela Confederação Internacional de Análise Térmica (ICTA).

A Tabela 1 mostra uma classificação geral destas técnicas, de acordo com a propriedade física acompanhada.

Tabela 1. Propriedades físicas medidas e técnicas relacionadas, em análise térmica2.

<table>
<thead>
<tr>
<th>Propriedade Física</th>
<th>Técnica</th>
<th>Abreviatura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relacionada</td>
<td>Usada</td>
</tr>
<tr>
<td>Massa</td>
<td>Termogravimetria</td>
<td>TG</td>
</tr>
<tr>
<td></td>
<td>Determinação isobárica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de variação de massa</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Determinação de gás-envolvido</td>
<td>EGD</td>
</tr>
<tr>
<td></td>
<td>Análise de gás envolvido</td>
<td>EGA</td>
</tr>
<tr>
<td></td>
<td>Termoanálise de emanação</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análise temperatuvarial</td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>Determinação por curva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de aquecimento / resfriamento</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Análise térmica diferencial</td>
<td>DTA</td>
</tr>
<tr>
<td>Entalpia</td>
<td>Calorimetria exploratória diferencial</td>
<td>DSC</td>
</tr>
<tr>
<td>Dimensões</td>
<td>Termolitometria</td>
<td>-</td>
</tr>
<tr>
<td>Carac. Mecânicas</td>
<td>Análise termomecânica</td>
<td>TMA</td>
</tr>
<tr>
<td></td>
<td>Análise termomecanométrica</td>
<td>DMA</td>
</tr>
<tr>
<td>Carac. Acústicas</td>
<td>Termossonometria</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Termoacustimetria</td>
<td>-</td>
</tr>
<tr>
<td>Carac. Ópticas</td>
<td>Termopontometria</td>
<td>-</td>
</tr>
<tr>
<td>Carac. Elétricas</td>
<td>Termoeletrometria</td>
<td>-</td>
</tr>
<tr>
<td>Carac. Magnéticas</td>
<td>Termomagnetometria</td>
<td>-</td>
</tr>
</tbody>
</table>

Como um caso particular das técnicas termoanalíticas, a Termogravimetria (TG), é a que acompanha a variação da propriedade física massa, da amostra em função do tempo (com a temperatura constante), ou em função da temperatura.

O tipo mais comum de experimentos empregando esta técnica é a “Termogravimetria Dinâmica”, em que se submeta a amostra a uma variação constante de temperatura (controlada por um programador), em um forno, enquanto uma balança monitora sua massa.

O aparelho utilizado para a técnica é chamado “Termobalança” e para que se tenha resultados, é preciso que se originem produtos de decomposição térmica voláteis, ou que ocorra incorporação de átomos ou moléculas, provenientes dos gases da atmosfera do forno, respectivamente aumentando ou diminuindo a massa original da amostra.

A técnica TG é essencialmente aplicável quando se deseja acompanhar variações de massa envolvidas num experimento, sendo seus resultados fundamentalmente de ordem quantitativa.

Os resultados de uma medida TG podem ser afetados por diversos fatores experimentais, motivo pelo qual alguns cuidados devem ser tomados quando da realização de experimentos.

Os livros texto de análise instrumental em nível de graduação trazem capítulos dedicados à análise térmica2,3 e discutem a influência destes fatores, porém com muita superficialidade.

Até mesmo livros específicos sobre termoanalíticas3, deixam de ilustrar, com figuras e experimentos este tema de vital importância para o sucesso de um experimento em análise termogravimétrica.

A única obra que trata com profundidade do assunto é o de Wendlandt2, um livro específico sobre o assunto e de acesso limitado a alunos de graduação, não estando disponível em todas as bibliotecas universitárias dos cursos de química. Através de regra só estão disponíveis quando há grupos de pesquisa usuários da técnica, na instituição.

O presente trabalho visa mostrar com experimentos simples, como alguns fatores controláveis pelo operador, podem afetar um experimento termogravimétrico, bem como a importância de se fixar estas variáveis para que se tenham resultados reproduzíveis. Esses fatores são: taxa de aquecimento, massa da amostra, fluxo de gás de arrefecimento, desalento da amostra e atmosfera do forno.

Outros fatores podem afetar os experimentos, porém estão mais ligados ao equipamento utilizado, sendo fatores considerados instrumentais e nem sempre podem ser controlados pelo operador (geometria do forno, tipo de porta amostra, condutividade térmica dos materiais do forno, etc.).

Para estes experimentos empregou-se o oxalato de cálcio, por ser este composto um padrão bastante comum em análise.
termogravimétrica, apresentando etapas de decomposição bem conhecidas e descritas abaixo.

I. \(\text{CaC}_2\text{O}_4 \cdot \text{H}_2\text{O} \rightarrow \text{CaC}_2\text{O}_4 + \text{H}_2\text{O} \uparrow \)

II. \(\text{CaC}_2\text{O}_4 \rightarrow \text{CaCO}_3 + \text{CO}_2 \uparrow \)

III. \(\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \uparrow \)

PARTE EXPERIMENTAL

Reagentes

O oxalato de cálcio utilizado foi obtido por reação entre o carbonato de cálcio e ácido oxálico (ambos Merck-P.A.). O sólido resultante em pH próximo a 6, foi filtrado a vácuo, lavado com água destilada seguido de etanol, após o que seco em estufa a vácuo por 6h a 60°C.

Foram ainda utilizados nitrogênio, gás carbônico e ar sintético White-Martins.

Equipamentos

Os experimentos termogravimétricos foram realizados em um módulo termogravimétrico Du Pont 951, acoplado a um termoanalizador Du Pont 9900 equipado com uma plotadora HP 7470A.

Para secagem do oxalato de cálcio utilizou-se uma estufa a vácuo EDG.

RESULTADOS E DISCUSSÃO

Variação da taxa de aquecimento

Neste caso, as amostras com massa de 7,0 mg foram aquecidas sob atmosfera dinâmica de nitrogênio (100 ml.min\(^{-1}\)), enquanto se faz variar a taxa de aquecimento de 2,5; 5,0; 10 e 20°C.min\(^{-1}\), em cada experimento.

Os resultados podem ser vistos na Figura 1, que mostra os termogramas obtidos.

A Tabela 2, mostra as diferenças no intervalo de temperatura em que ocorrem as transições I, II e III para a sequência de decomposição do oxalato de cálcio monohidratado.

Pode-se notar que, quanto maior a taxa de aquecimento utilizada maior a temperatura em que aparece a transição. Na verdade, a temperatura da transição não é alterada, o que varia é a velocidade com que o equipamento consegue detectar a variação de massa. Se a velocidade de aquecimento é alta, o fenômeno começa a ocorrer na temperatura característica, porém como o programador de temperatura continua aquecendo o forno, a variação de massa causada pelo fenômeno somente vai ser detectada quando o termopar de amostra (sensor que acompanha a temperatura) já estiver acusando uma temperatura mais alta que aquela em que a transição de fato ocorreu. Conforme pode ser visto nos experimentos, isto é mais acentuado quanto maior a taxa de aquecimento utilizada. Um fenômeno seme-lhante ocorre nos aparelhos de ponto de fusão que utilizam a glicerina como condutor de calor.

Variação da massa da amostra

Para estes experimentos foi empregada taxa de aquecimento constante de 20°C.min\(^{-1}\) e atmosfera dinâmica de N\(_2\) (100 ml.min\(^{-1}\)).

As massas empregadas foram 3,5; 7,0 e 14 mg.

Os resultados obtidos mostram que, quanto menor a massa da amostra, menor a temperatura em que a transição ocorre. Isto porque quanto menor a quantidade de amostra, mais rapidamente ocorre a homogeneização de temperatura no material e a resposta do detector ocorre numa temperatura aparentemente menor.

Cada equipamento apresenta um limite próprio para o valor

![Figura 1. Curvas TG (% de massa residual em função da temperatura), para o oxalato de cálcio em diferentes taxas de aquecimento.](image-url)

Tabela 2. Intervalos de temperatura em que ocorrem as etapas de decomposição do oxalato de cálcio, em relação às mudanças na taxa de aquecimento.

<table>
<thead>
<tr>
<th>Taxa de Aquecimento/°C.min(^{-1})</th>
<th>Temperatura da Transição/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>20</td>
<td>152-207</td>
</tr>
<tr>
<td>10</td>
<td>132-182</td>
</tr>
<tr>
<td>5,0</td>
<td>130-179</td>
</tr>
<tr>
<td>2,5</td>
<td>128-162</td>
</tr>
</tbody>
</table>

Condições: fluxo do gás de arreaste = 100 ml.min\(^{-1}\); massa da amostra = 7,0 mg; atmosfera do forno = N\(_2\).

Tabela 3. Intervalos de temperatura em que ocorrem as etapas de decomposição do oxalato de cálcio, em relação às massas de amostra utilizadas.

<table>
<thead>
<tr>
<th>Massa da amostra/mg</th>
<th>Temperatura da Transição/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>14</td>
<td>150-215</td>
</tr>
<tr>
<td>7,0</td>
<td>152-207</td>
</tr>
<tr>
<td>3,5</td>
<td>138-194</td>
</tr>
</tbody>
</table>

Condições: fluxo do gás de arreaste = 100 ml.min\(^{-1}\); taxa de aquecimento = 20°C. min\(^{-1}\); atmosfera do forno = N\(_2\).

![Figura 2. Curvas TG (% de massa residual em função da temperatura), para o oxalato de cálcio com diferentes massa de amostra.](image-url)

![Figura 3. Intervalos de temperatura em que ocorrem as etapas de decomposição do oxalato de cálcio, em relação às massas de amostra utilizadas.](image-url)
mínimo de massa que pode ser utilizada, devido à sua sensibilidade, pois quando a massa é muito pequena os resultados são influenciados por ruídos.

Variação do Fluxo do Gás de Arraste

Estes experimentos foram efetuados com amostras de 7,0 mg, com taxa de aquecimento de 20°C.min⁻¹ e atmosfera de N₂, com fluxo variando entre 50, 100 e 150 ml.min⁻¹.

Os resultados obtidos podem ser vistos na Figura 3 e as temperaturas de ocorrência são mostradas na Tabela 4.

Nota-se neste caso um retardamento nas transições quando se utiliza menor fluxo de gás. Isto pode ser explicado por uma menor velocidade na remoção dos produtos voláteis de decomposição (H₂O, CO e CO₂), o que retarda a saída destes gases.

![Figura 3. Curvas TG (% de massa residual em função da temperatura), para o oxalato de cálcio, com diferentes fluxos de gás de arraste.](image)

Tabela 4. Intervalos de temperatura em que ocorrem as etapas de decomposição do oxalato de cálcio, em função da variação do fluxo do gás de arraste.

<table>
<thead>
<tr>
<th>Fluxo de N₂/ml.min⁻¹</th>
<th>Temperatura da Transição°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>150</td>
<td>129-200</td>
</tr>
<tr>
<td>100</td>
<td>152-207</td>
</tr>
<tr>
<td>50,0</td>
<td>145-206</td>
</tr>
</tbody>
</table>

Condições: massa da amostra = 7,0 mg; taxa de aquecimento = 20°C. min⁻¹; atmosfera do forno = N₂.

Variação no Adensamento da Amostra

Neste caso compararam-se os resultados obtidos quando se utilizam uma massa de amostra fixa de 7,0 mg, taxa de aquecimento de 20 °C.min⁻¹ e atmosfera dinâmica de N₂, com fluxo de 100 ml.min⁻¹. Uma das amostras foi utilizada pulverizada e a outra na forma de pastilha, presa numa pastilhador de infra-vermelho.

Pode-se notar da Figura 4, e dos dados da Tabela 5, que a prensagem da amostra retarda a sua decomposição. O efeito pode ser explicado pela diminuição da superfície efetiva de contato térmico da amostra com o ambiente. O fluxo de calor fica dificultado caso a amostra tenha um coeficiente de condutividade térmica baixo, o que acentuaria o efeito nestes casos.

Influência dos Gases da Atmosfera do Forno

Nestes experimentos utilizou-se amostras com 7,0 mg, taxa de aquecimento de 20°C.min⁻¹ e fluxo do gás de arraste de 100 ml.min⁻¹. Os gases utilizados foram N₂, ar sintético e CO₂.

![Figura 4. Curvas TG (% de massa residual em função da temperatura), para o oxalato de cálcio, mostrando o efeito do adensamento da amostra.](image)

Tabela 5. Intervalos de temperatura em que ocorrem as etapas de decomposição do oxalato de cálcio, com e sem prensagem da amostra.

<table>
<thead>
<tr>
<th>Tipo de Adensamento</th>
<th>Temperatura da Transição°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>com prensagem</td>
<td>141-222</td>
</tr>
<tr>
<td>sem prensagem</td>
<td>152-207</td>
</tr>
</tbody>
</table>

Condições: massa da amostra = 7,0 mg; taxa de aquecimento = 20°C. min⁻¹; fluxo do gás de arraste = 100 ml.min⁻¹; atmosfera do forno = N₂.

A Figura 5 e a Tabela 6, ilustram os resultados obtidos.

Nesta Figura pode-se observar que o N₂ e o ar sintético têm uma influência pequena nas temperaturas de decomposição, porém o CO₂, apresenta um efeito marcante na decomposição da amostra.

A influência maior ocorre na saída do CO₂, quando se utiliza uma atmosfera de gás carbônico. Neste caso ocorre uma reação química que libera o mesmo gás que está sendo utilizada para arraste, o que provoca deslocamento no equilíbrio químico representado pela Equação III. Para a água não há reação química (apenas volatilização), e o efeito é menos pronunciado. Enquanto que na liberação do CO, Etapa II, os gases envolvidos são diferentes e o efeito é, também menor, apesar da ocorrência de reação química.

O nitrogênio é inerte neste caso e o ar sintético apesar de

![Figura 5. Curvas TG (% de massa residual em função da temperatura), para o oxalato de cálcio, com diferentes gases de arraste saturando a atmosfera do forno.](image)
Tabela 6. Intervalos de temperatura em que ocorrem as etapas de decomposição do oxalato de cálcio, com as diferentes atmosferas do forno.

<table>
<thead>
<tr>
<th>Atmosfera</th>
<th>Temperatura da Transição°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Gás Carbônico</td>
<td>141-223</td>
</tr>
<tr>
<td>Nitrogênio</td>
<td>152-207</td>
</tr>
<tr>
<td>Ar Sintético</td>
<td>137-207</td>
</tr>
</tbody>
</table>

Condições: massa da amostra = 7,0 mg; taxa de aquecimento = 20°C. min⁻¹; fluxo do gás de arraste = 100 ml.min⁻¹.

apresentar composição mista de diversos gases, inclusive os envolvidos nas reações químicas, tem um efeito pequeno na decomposição, já que a concentração destes gases é relativamente baixa, predominando o nitrogênio em sua composição.

A atmosfera do forno assume ainda papel importante no caso da ocorrência de oxidações, pois podem ocorrer inclusivamente ganhos de massa e a utilização de gases adequadamente escolhidos pode ser decisiva para a elucidação de mecanismos de decomposição térmica.

CONCLUSÃO

Desta forma é possível verificar que alguns cuidados devem ser tomados para que se tenham resultados reproduzíveis em experimentos termogravimétricos.

Os resultados obtidos nestes experimentos permitiu verificar para alguns parâmetros contornáveis pelo operador do instrumento que:

1. O uso de taxas de aquecimento elevadas pode deslocar as perdas de massa para temperaturas maiores;
2. Maiores massas de amostra também deslocam as transições para temperaturas mais elevadas;
3. Aumentando-se o fluxo do gás de arraste ocorre um deslocamento das transições para menores temperaturas;
4. Amostras mais adensadas se decompõem com maior dificuldade, elevando as temperaturas de perda de massa;
5. A atmosfera do forno pode retardar as transições, quando o gás de arraste tem como componente, um ou mais gases, que sejam iguais aos produtos de decomposição da amostra.

Desta forma devem-se tomar alguns cuidados e relatar cuidadosamente as condições utilizadas em cada experimento, para que os resultados termogravimétricos possam ser reproduzidos. Deve-se observar que as alterações causadas por alguns fatores são mais acentuadas que outras, notadamente as causadas pela atmosfera do forno e taxas de aquecimento.

REFERÊNCIAS

Publicação financiada pela FAPESP