SOURCES, FORMATION, REACTIVITY AND QUANTIFICATION OF POLYCYCLIC AROMATIC HIDROCARBONS (PAH) IN ATMOSPHERE. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants whose environmental behavior has been investigated for more than 20 years. The widespread occurrence of PAHs is largely due to the formation and releasing during incomplete combustion of petrol, oil, coal and wood. The atmosphere is a major pathway for transport and deposition of natural and anthropogenic PAHs and other organic chemicals. Motor vehicles are important sources of atmospheric PAHs. They are also emitted by aluminum production plant, forest fires, residential wood combustion, coke manufacturing, power generation and waste incineration. PAHs and derivatives, e.g. nitro-PAHs (NPAHs) and oxi-PAHs, constitute important class of compounds because several are known carcinogenic in animals and mutagenic in bacteria agents. Specially nitroarrenes were found to be powerful direct acting mutagens in the Ames-Salmonella test. PAHs may react with NO$_2$ or N$_2$O$_5$ in atmosphere, giving NPAHs, being an important route for nitrene formation. Degradation of PAHs adsorbed on aerosols or in vapor-phase and the dry deposition or wet deposition are important sink for such compounds in the atmosphere. The determination of PAHs and their derivatization products in ambient air is therefore of considerable importance to the characterization of air and life quality.

Keywords: polycyclic aromatic hydrocarbons; PAHs determination; NPAHs.

1. INTRODUÇÃO

A atmosfera constitui o principal meio de transporte e depósito para os compostos orgânicos e inorgânicos emitidos por fontes naturais ou antropogênicas (resultantes da ação/atividade humana). Os Hidrocarbonetos Policíclicos Aromáticos (HPA) são emitidos por diversas fontes de combustão e estão presentes na atmosfera em fase vapor ou adsorvidos em material partículado1,2,3,4. A importância ambiental dos HPA e derivados está muito bem estabelecida e aceita pela comunidade científica. Os estudos sobre essa classe de compostos englobam uma grande variedade de aspectos como cinética e produtos de reações em fase vapor, desenvolvimento de metodologias analíticas e estudos de campo sobre concentrações atmosféricas, síntese, atividades cancerígena e mutagênica e processos de remoção da atmosfera1,2. As transformações químicas dos HPA na atmosfera são estudadas desde 1956 quando foram publicados os trabalhos pioneiros de Falk et al16,17. Outras matrizes como hidrofílica18 soló19,20, biótica21, alimentos22, etc., têm sido objeto de atenção e pesquisas nessa área.

Os Nitro-Hidrocarbonetos Policíclicos Aromáticos (NHPA) também são emitidos para a atmosfera em processos de combustão, porém, em menores quantidades que os HPA. Contudo, a formação de NHPA na atmosfera predomina sobre o processo de emissão direta4,15.

Os HPA, após transformação química ou metabólica, são eficazes agentes cancerígenos e/ou mutagênicos, sendo estes os principais campos de estudos de suas atividades biológicas10,17. Ao contrário dos HPA os derivados nitrados (mono e polonitrados) são agentes diretamente mutagênicos. De acordo com a Agência Internacional para Pesquisa do Câncer, da França, os NHPA estão entre aquelas substâncias químicas que podem estar associadas com o aumento da ocorrência de tumores malignos14,19,20. Recentemente, uma outra atividade biológica, a fototoxicidade21, foi atribuída aos HPA22.

O interesse pelos NHPA aumentou consideravelmente, a partir de 1978, após a comprovação de que estes compostos podem ser formados, em fase vapor, pela reação entre HPA e óxidos de nitrogênio, em condições que podem ser reproduzidas na troposfera18,23,24,25. Pela sua importância ambiental os NHPA constituem um capítulo à parte no estudo dessa classe de substâncias, tendo um destaque especial nesse trabalho.

Nos os últimos 40 anos foi utilizada uma grande variedade de procedimentos experimentais no estudo da reatividade, quantificação e propriedades de HPA não havendo, entretanto, uniformidade em relação às condições, metodologias e técnicas de amostragem utilizadas.

É necessário, portanto, a continuidade de estudos para esclarecer os mecanismos de transformação de HPA e NHPA na atmosfera e, também, o desenvolvimento de procedimentos eficazes de amostragem e de metodologias para a quantificação desses compostos em baixos níveis de concentração.

1.1. Aspectos Históricos

Pode-se considerar como o início da química dos HPA o isolamento do benzo[a]pireno (BaP) do carvão, em 1931 e, subseqüentemente, a sua síntese no mesmo ano26. A sua identificação como uma nova substância química, em 1933, permitiu demonstrar que o BaP é um forte agente cancerígeno em animais27. A estrutura e o sistema de numeração do BaP são mostrados a seguir.

![Benz[a]pireno (BaP)](image)
As primeiras provas dos riscos ocupacionais e ambientais dos HPA foram obtidas em 1922 pela demonstração de que extratos orgânicos de fuligem são cancerígenos em animais e, em 1942, também pela atividade cancerígena do extrato de material particulado ambiental. Posteriormente a atividade biológica foi observada em extratos de material particulado ambiental coletado do smog fotoquímico de Los Angeles.

Em 1949 o BaP foi identificado em fuligem doméstica e, em 1952, em material particulado ambiental. Em 1970 o BaP (e outros HPA) é caracterizado como um agente cancerígeno de distribuição mundial, em ambientes respiráveis, como constituinte de aerossóis urbanos.

Nos anos 70 é reconhecido o excesso de carcinogenicidade atribuído ao BaP e demonstrado que a atividade cancerígena dos extratos de partículas atmosféricas não é somente devida aos HPA mas, também, à presença de outras substâncias orgânicas ainda desconhecidas. Estas estão presentes, também, no material orgânico policíclico de fontes de emissão primárias.

Também nos anos 70 é introduzido um método muito sensível e eficaz para determinação da mutagenicidade de substâncias químicas, por meio de bactérias do gênero Salmonella que ficaria conhecido como "ensayo de mutagenicidade Ames-Salmonella" em homenagem aos autores Ames et al.

1.2. Fontes de Emissão de HPA e NHPA

Os HPA são emitidos por fontes naturais e antropogênicas. A contribuição de fontes naturais de HPA é muito limitada restringindo-se, praticamente, à queima espontânea de florestas e emissões vulcânicas. As fontes antropogênicas representam o principal processo de emissão de HPA. A queima de combustíveis como o carvão e seus derivados, carvão, madeira, gás de carvão etc, produz HPA e muitos outros poluentes atmosféricos. A quantidade e os tipos de HPA formados dependem das condições específicas do processo e do tipo de combustível, sendo que processos mais eficientes emitem menores quantidades de HPA. A fumaça de cigarros, queimadas e calefação (especialmente em países de clima temperado) são importantes fontes de HPA e derivados.

Os HPA são oriundos também de fontes tecnológicas que podem ser móveis ou estacionárias. Entre as fontes móveis, destaca-se o motor de combustão interna como o principal emissor de HPA para o ambiente estando presente em diversos veículos de transporte de cargas e passageiros. As fontes estacionárias são subdivididas entre as utilizedas na geração de energia elétrica e calor e aquelas ligadas à atividade industrial (e.g., produção de alumínio) e de incineração (principalmente de rejeitos químicos) e podem emitir uma grande variedade de produtos de combustão incompleta (PCI).

As fontes veiculares de emissão têm uma grande importância devido à complexidade e quantidade, cada vez maior, de material que é lançado na atmosfera. O material particulado emitido por veículos a diesel, por exemplo, é constituído principalmente de carbono eletrolítico que atua como superfície de condensação de HPA e de outros compostos orgânicos. O tamanho pequeno destas partículas determina o longo tempo de residência na atmosfera e a eficiência do processo de deposição na região alveolar dos pulmões. A identificação de vários HPA de uma das frações do extrato de material coletado da emissão de motores a diesel é ilustrada no cromatograma (CG) da figura.

Em estudos recentes Wild e Jones avaliam o processo de formação, estocagem e remoção de HPA ambiental no Reino Unido. As emissões totais de HPA são estimadas em 712 toneladas métricas anuais sendo a combustão doméstica de carvão e os veículos automotores os principais responsáveis, contribuindo cada uma destas fontes com 11,3 e 84,2%, respectivamente. Em 1985 as emissões de HPA nos Países Baixos e Alemanha foram estimadas em, respectivamente, 1.116 e 8.218 toneladas métricas. Nos Países Baixos 20% das emissões foram consideradas como veiculares e 56% como de fontes não industriais.

A emissão de HPA por fótons móveis, nos Estados Unidos da América, foi estimada em 6.400 toneladas métricas, no ano de 1979, sendo que o BaP, um agente caracterizado como cancerígeno, contribui com 43 toneladas métricas. Os números da tabela 1 demonstram a dimensão do problema.

Tabela 1. Estimativa de emissão de HPA por fontes móveis nos EUA, em 1979.

<table>
<thead>
<tr>
<th>HPA</th>
<th>Emissão Total (toneladas métricas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenantreno</td>
<td>1.400</td>
</tr>
<tr>
<td>Fluorantreno</td>
<td>750</td>
</tr>
<tr>
<td>Pireno</td>
<td>950</td>
</tr>
<tr>
<td>Benzoxantraceno</td>
<td>37</td>
</tr>
<tr>
<td>Criseno</td>
<td>150</td>
</tr>
<tr>
<td>Benzpa[alp]irenco</td>
<td>43</td>
</tr>
<tr>
<td>Benzoperleno</td>
<td>110</td>
</tr>
<tr>
<td>Indenopirenco</td>
<td>30</td>
</tr>
<tr>
<td>1-Nitropirenco</td>
<td>17</td>
</tr>
</tbody>
</table>

A emissão de motores de veículos é considerada a principal fonte de HPA atmosféricos em áreas metropolitanas. Estudos realizados nos EUA em 1990-1991, indicam que as fontes veiculares contribuem com 35% do total de HPA emitido. Outras fótons como a produção industrial de alumínio, queima de florestas, aquecimento residencial, geração de energia elétrica etc. também contribuem para formação e emissão de HPA e derivados para atmosfera (Tabela 2).

<table>
<thead>
<tr>
<th>Tabela 2. Fontes de emissão de HPA para atmosfera (EUA).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonte</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Motores de veículos</td>
</tr>
<tr>
<td>Produção de alumínio</td>
</tr>
<tr>
<td>Queima de florestas</td>
</tr>
<tr>
<td>Aquecimento residencial</td>
</tr>
<tr>
<td>Processamento industrial de coque</td>
</tr>
<tr>
<td>Geração de energia elétrica</td>
</tr>
<tr>
<td>Incineração</td>
</tr>
</tbody>
</table>

No Brasil não existe ainda uma base de dados que permita estimar as quantidades e as fontes de HPA lançados na atmosfera. Os NHPA também são emitidos diretamente por diversas fontes de combustão. Já foram identificados em material coletado de emissão de motor a diesel e a gasolina, em fumaça de cigarro e madeira. Também, foram encontrados em toner de.
1.3. Formação de HPA e NHPA

Os HPA são formados em processos de combustão incompleta, a altas temperaturas e, deste modo, são essencialmente emitidos por todos tipos de combustão. A formação pirolítica de HPA é bastante complexa e variável, dependendo de fatores como pressão e temperatura. O esquema mecanístico aceito para esta reação envolve a polymerização via radicais livres, em várias etapas, até a formação de núcleos aromáticos condensados (Fig. 2)⁷,17,45,46.

Figura 2. Esquema mecanístico para a formação de HPA por meio de pirolise.

Muitos derivados de HPA como os NHPA e OXI-HPA são também formados em processos de combustão incompleta e emitidos para atmosfera por diversas fontes, e.g., na emissão de motores a diesel.⁴¹,12,14,18, 19

Os NHPA são presumivelmente formados no ambiente através da reação entre HPA e óxidos de nitrogênio e/ou ácido nítrico. Os HPA podem ser nitrados, nitrosados ou oxidados como resultado destas reações. A reação pode ocorrer em fase vapor ou sobre material particulado. A formação de NHPA pode também ocorrer durante o processo de coleta, constituindo-se, neste caso, um artefato de amostragem. Pitts et al. demonstraram que HPA depositado sobre filtros são convertidos a NHPA pela passagem de NO₂.⁴²,47

Uma evidência direta de que tais reações atmosféricas ocorrem, de fato, foi obtida pelo isolamento do 2-nitrofluoreno (2-NF) e do 2-nitropireno (2-NP) de MOP ambiental. Estes dois NHPA não são relatados em processos de emissão direta de fumaça de combustão nem são formados em condições características de amostragem do MOP. Por outro lado 2-NF e 2-NP estão entre os mais abundantes NHPA presentes no MOP ambiental sendo, possivelmente, resultado das transformações atmosféricas de FLT e PYR⁴³.

O 2-NF é formado em fase vapor, em bons rendimentos, através da reação com OH em presença de NO₂ e, também, pela interação com N₂O₅. Nas mesmas condições são também formados, em rendimentos menores, o 2-NP, 7-NF e 8-NF (Esquema 1)⁴⁶,4⁹.

A reação de PYR com OH/NO₃ fornece o 2-NP como produto principal enquanto a reação com N₂O₅ em fase vapor resulta em rendimentos muito baixos (Esquema 2)⁴⁶,4⁸.

Deste modo, 2-NF é formado durante o dia em reações iniciadas pelo radical OH e durante a noite pela ação do N₂O₅, enquanto o 2-NP é formado somente pela reação com OH/NO₃. É importante observar que os nitroarênios formados na reação com OH/NO₃ e N₂O₅ não incluem os produtos principais da substituição eletrofilica aromática dos HPA correspondentes. A nitratação eletrofílica do PYR conduz quase que exclusivamente ao 1-NP e a reação com FLT fornece o 3-NF como produto principal. Os estudos mostram que a reação com OH/NO₃ pode ser uma importante rota para a formação de 2-NF e 2-NP observado no MOP ambiental.⁴⁷

O composto 1-NP tem sido detectado em vários tipos de processos de combustão incluindo partículas emitidas por veículos a diesel e a gasolina e a queima de carvão. Consistente com este fato o 1-NP tem sido encontrado em todas as amostras de ar atmosférico examinadas com esta finalidade. Contudo, nenhum dos dois 2-NF ou 2-NP tem sido detectado nas emissões acima referidas, mas somente em processos de emissão industrial com poucas unidades distribuídas no mundo. Observando que o 2-NF é sempre mais abundante que 1-NP em MOP ambiental e que algumas vezes o 2-NP também é mais abundante, pode-se considerar como estabelecida a importância da formação atmosférica dos nitroareno.⁴⁸,5⁰

Como produtos de reação do fenantreno, sob condições atmosféricas simuladas, em câmara ambiental de reação, além dos NHPA, foram também identificadas as nitroilhacações. Estas, que constituem uma segunda classe de derivados mutagênicos de HPA, foram também encontradas em amostras de ar ambiental.⁵¹,5²

A conversão de HPA a nitroderivados, em atmosferas urbanas, confere uma grande importância a este processo secundário de produção de NHPA. Determina, deste modo, a necessidade de investigações que possam esclarecer as dúvidas existentes quanto às rotas de formação e remoção destes compostos da atmosfera.

1.4. Processos de Remoção de HPA da Atmosfera

Os HPA e NHPA são removidos da atmosfera por processos físicos e químicos que dependem de condições como incidência
de radiação solar, clima (chuva, ventos etc.), da presença de outros poluentes e da reatividade química2,3.

1.4.1. Processos Físicos

A deposição seca e úmida são os principais processos físicos de remoção de HPA da atmosfera que existem em fase vapor ou associado a partículas. Estes processos dependem das características físicas e do tamanho das partículas, que também influi diretamente no transporte atmosférico (Fig. 3)2,3,5,6.

![Figura 3. Partição vapor-partícula e remoção da atmosfera.](image)

O tamanho da partícula depende fundamentalmente do processo que a originou. Partículas consideradas como grandes (d = 2 - 2,5 μm) são produzidas geralmente por processos mecânicos como levantamento de poeira do solo, spray marinho, atividade vulcânica e emissão por plantas. Partículas pequenas (d < 0,08 μm) são originárias do processo de conversão vapor-partícula e conhecidas como \textit{partículas nucleares} ou partículas de \textit{Aitken}. As partículas médias (0,08 < d < 2 μm) são também produzidas pela conversão vapor-partícula e pela coagulação das partículas de \textit{Aitken} que, por este motivo, têm um tempo de vida muito curto1,3.

A deposição seca envolve a sedimentação e a impactação inercial induzida. A velocidade de deposição seca na atmosfera é controlada pelo tamanho da partícula e, como esperado, aumenta com o tamanho. Os resultados experimentais da medida de velocidade de deposição seca são compatíveis com aqueles obtidos por meio de cálculos teóricos55.

Para uma partícula de 1 μm, a uma altura de 20 m, com uma velocidade do vento de 14,4 Km/h, o tempo de deposição é de ca. 4 dias e corresponde a um transporte de 1.400 Km, assumindo que a velocidade e direção do vento permaneçam constantes1. Contudo, os HPA estão associados preferencialmente a partículas submicrométricas, d.p. < 1 μm, o que implica em maior tempo de permanência na atmosfera34,55.

O processo de deposição úmida interfere na remoção de HPA atmosféricos em ambas as fases - gasosa e partículada. Estudos recentes demonstram que o coeficiente de remoção de HPA da atmosfera é positivamente relacionado com a intensidade de chuva56.

Compostos menos voláteis estão preferencialmente associados com o aerossol e sofrem uma maior interferência em processos de deposição úmida. Por exemplo, o efeito da precipitação pluviométrica, observado em Baton Rouge (EUA, 1992), é mais acentuado para o fluorotano do que para o fenantreno (Tabela 3)37.

O processo de remoção de HPA atmosféricos (por deposição seca ou úmida) é dependente da temperatura. Por exemplo, durante o verão, em Baton Rouge (EUA, 1992), foram observados níveis de concentração de 60-70 ng m-3 de fenantreno, em fase vapor, enquanto que na fase particulada a concentração ficou abaixo dos limites de detecção. No inverno as concentrações de PHE foram de 10-30 ng m-3 em fase vapor e 0,70 ng m-3 em material particulado. Estes resultados demonstram que há claramente uma tendência dos compostos orgânicos semi-voláteis a se associarem com o material particulado, a baixas temperaturas, ocorrendo uma variação sazonal nos níveis de concentração na atmosfera. A quantidade de partículas totais suspensas também é maior no verão (40-120 μg m-3) do que no inverno (20-50 μg m-3)57.

Estudos recentes demonstram que das 900 toneladas médicas de HPA, emitidas anualmente no Reino Unido, somente 40 toneladas permanece na atmosfera. Isto indica que a atmosfera não é um repositório ou coletor de HPA mas, principalmente, um meio de transporte, diluição e reação. Também é estimada que do total emitido para atmosfera, 210 toneladas médicas/ano são transferidas para superfície por meio da deposição seca ou úmida. Vários estudos mostram que alguns HPA, especialmente em fase particulada, são depositados nas imediações das fontes de emissão53.

Os processos físicos de adsorção, dessorção e sublimação também estão presentes e contribuem para o destino dos HPA atmosféricos.

1.4.2. Processos Químicos

Os processos químicos potencialmente mais importantes para a remoção de HPA da atmosfera são a fotólise e a reação com o radical OH, durante o dia; a reação com o radical NO\textsubscript{3} e com N\textsubscript{2}O\textsubscript{5}, no período noturno; e a reação com ozônio durante o dia e a noite1,34,35.

Experiments realizados em laboratório (reação entre HPA e \textit{OH}/\textit{NOx}, ozônio etc. em fase vapor) e a identificação de muitos derivados (principalmente nitro e oxido-derivados) em amostras de ar atmosférico são evidências de que, de fato, ocorrem reações entre HPA e certos poluentes atmosféricos. Os produtos destas reações são, em alguns casos, mais tóxicos que os HPA que originaram.

No tópico sobre propriedades químicas são discutidas as principais transformações dos HPA na atmosfera.

1.5. Atividades Biológicas

Uma grande variedade de substâncias químicas presentes no ambiente, \textit{e.g.}, na água, atmosfera, solo, plantas, alimentos etc., são benéficas ou ativamente benéficas. Contudo, tem aumentado muito o relato de poluentes ambientais que apresentam atividade mutagênica e cancrogerena. A caracterização da
atividade biológica e a quantificação destes compostos no ambiente não é suficiente para determinar o risco individual. Geralmente, após absorção pelo organismo, estas substâncias são convertidas em metabólitos ativos. Uma rigorosa avaliação dos riscos requer a determinação dos efeitos resultantes da exposição, conhecimento da relação dose-resposta e compreensão do mecanismo de mutagênese para cada substância química considerada. Isto finalmente depende de metodologias analíticas adequadas para a quantificação de metabólitos ativos oriundos de poluentes ambientais.

Os HIPA estão entre aqueles poluentes ambientais que apresentam atividade cancerígena e mutagênica e que, já comprovado, provocam tumoração em animais e mutação em bactérias.

A incidência de câncer pulmonar é maior em áreas urbanas do que na zona rural, havendo a suspeita de que o material particulado atmosférico (MPA) contribua para este fato. O benzo[a]pireno que está presente no aerossol atmosférico urbano é um agente cancerígeno. O extrato orgânico de aerossol atmosférico, que contém HIPA e derivados, apresenta atividade mutagênica em ensaios in vitro. A atividade mutagênica do MPA ambiental é muito similar àquela dos aerossóis provenientes da emissão de motores a diesel que contêm compostos com ação mutagênica direta como o 1-nitropyrene. A comparação entre a atividade mutagênica do PYR (inativo), BaP (2,3 mutantes/nmol) e 1,8-dinitropyrene (254.000 mutantes/nmol), por meio de teste Ames-Salmonella, indica que os nitroareenos são potentes agentes mutagênicos com atividade superior aos correspondentes HIPA. Por outro lado, estudos da carcinogenicidade em animais indicam que o BaP tem atividade cancerígena equivalente aos dinitropyrenos. A conclusão é que a mutagenicidade potencial não é necessariamente convertida em carcinogenicidade potencial. O grau de carcinogenicidade e mutagenicidade de alguns HIPA são mostrados na tabela 4.

Tabela 4. Carcinogenicidade e mutagenicidade de HIPA e NHPA

<table>
<thead>
<tr>
<th>Composto</th>
<th>Carcinogenicidade (estudo em animais)</th>
<th>Mutagenicidade (teste Ames)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoranteno</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pireno</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Criseno</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Benzo[a]pireno</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td>1-Nitropyrene</td>
<td>- (+)</td>
<td>+ + +</td>
</tr>
<tr>
<td>3-Nitrofluoranteno</td>
<td>+</td>
<td>+ + +</td>
</tr>
</tbody>
</table>

- inativo; (+) muito fraco; + fraco; ++ moderado; +++ forte; ++++ muito forte

Os HIPA podem penetrar no corpo humano por inalação, através da pele ou por ingestão. A ação exercida pelos HIPA é ativada durante o processo metabólico que tem a finalidade de promover a excreção urinária. O mecanismo de eliminação do BaP pelo corpo humano envolve formação de epóxidos e, posteriormente, de compostos polihidroxilados (mais solúveis em água) que são mais facilmente eliminados pela via urinária. Um dos intermediários (III) pode reagir com a guanina do DNA formando um aduto e forçar a célula a erros de reparação que, subsequentemente, pode resultar em tumoração (Fig. 4). Como isto pode modificar a conformação e funcionamento do ácido nucleico ainda está para ser determinado.

Investigações sobre a atividade cancerígena relativa de HIPA indicam que os epóxidos formados em regio de baixa, em moléculas angulares, são mais reativos que os outros epóxidos possíveis na mesma molécula ou epóxidos formados em moléculas lineares. Esta região é conhecida por propiciar vários tipos de reações e a reatividade pode ser resultante da estabilidade do carbocátion formado como intermediário, o mesmo não ocorrendo com os HIPA lineares.

Os ensaios Ames-Salmonella são geralmente realizados, em condições ideais, com a Salmonella typhimurium (e.g. usando a cepa TA98). A atividade mutagênica pode ser dependente de fatores externos de ativação à base de preparações enzimáticas que são obtidas geralmente de fígado de rato (S9). Neste caso a substância é considerada como promutagênica e a sua ativação in vivo ocorre após a transformação metabólica. Em geral a atividade mutagênica dos NHPA não é dependente de fatores de ativação externos.

A genotoxicidade dos HIPA depende da estrutura do HIPA correspondente, do número e da posição dos átomos de nitrogênio. A maioria dos NHPA são agentes mutagênicos, em bactérias, sendo a mutagenicidade dependente da redução enzimática da função nitro à hidroxilamina correspondente. O mecanismo de ação é semelhante ao verificado para os metabólitos dos HIPA.

Estudos recentes sugerem que os produtos de transformações atmosféricas de HIPA podem ter uma importante significação na atividade mutagênica de extratos de amostras ambientais atmosféricas (vapor e partículas).

Devido a importância ambiental e efetos sobre a saúde humana, a carcinogenicidade, mutagenicidade e metabolismo de HIPA e NHPA continuam a ser foco de interesse e de intensas investigações.

1.6. HIPA e o ambiente

Os hidrocarbonetos policíclicos aromáticos ocorrem amplamente no ambiente e podem ser encontrados em plantas terrestres e aquáticas, solos, sedimentos, águas naturais e marinas e, particularmente, na atmosfera. Os HIPA já foram detectados na atmosfera de zonas urbanas, subúrbias, florestais e nas áreas mais distantes do planeta (Antártica), contudo, suas concentrações são maiores em áreas urbanas densamente povoadas e zonas industriais.

Os prejuízos que os HIPA podem causar ao ambiente têm sido objeto de vários estudos. A contaminação de rios, mares e florestas, e, também da atmosfera, pode causar danos irreparáveis
à natureza e à saúde humana. A ação maléfica dos HPA sobre os organismos vivos pode ser exercida diretamente e, principalmente, através de seus derivados muitos deles ainda desconhecidos.

Os efeitos dos HPA sobre a saúde humana está diretamente associado ao mecanismo de contaminação que ocorre principalmente através da inalação de aerossóis atmosféricos.

O trato respiratório pode ser convenientemente dividido em duas regiões distintas: a região extratorátrica constituída das vias nasais e oral, faringe e laringe; e a região intratorátrica que inclui os brônquios, traqueia e alvéolos. Devido a deposição de partículas ambientais e organismos a região extratorátrica é muito susceptível a infecções e doenças respiratórias. A deposição de partículas na região extratorátrica é considerada a primeira linha de defesa contra a penetração de partículas nas vias mais distantes mas, também, é reconhecido como um sítio de efeitos tóxicos. A região intratorátrica, por sua vez, é dividida em região traqueobronquial e região alveolar onde geralmente ocorre o câncer de pulmão e outras enfermidades crônicas.

Partículas menores têm um tempo de residência maior na região intratorátrica, permanecendo por semanas e até anos em contato direto com a membrana alveolar. O estudo da distribuição do BaP no Rio de Janeiro, utilizando um impactador em cascata, indica que os HPA estão preferencialmente adsorvidos em partículas menores, com diâmetro aerodinâmico entre 0,05 e 0,26 μm. Outros estudos indicam que 95% dos HPA estão associados a partículas menores que 10 μm de diâmetro o que corresponde àquelas consideradas inaláveis (d.p. ≤ 15 μm). Isto aumenta a possibilidade de absorção pelo organismo devido a eficiente deposição intratorácica.

Estudos recentes indicam que a deposição de região intratorácica aumenta com o tamanho da partícula, de 5 a 20 nm, e decrece de modo constante até o diâmetro de 200 nm. A deposição mais eficiente na região intratorácica ocorre, portanto, com partículas submicrométricas em torno de 20 nm.

As concentrações de BaP (que é o mais estudado) e de outros HPA associados a aerossóis atmosféricos, e.g., FEN, ANT, PYR, BaA, CHR, FLT, BaF, IND, COR etc., têm sido determinadas, principalmente nas grandes cidades.

Um grande número de trabalhos relatam a quantificação de HPA em vários países do mundo, principalmente nos EUA. Por exemplo, a tabela mostra os níveis de HPA em amostras de ar atmosférico coletadas em várias localidades e períodos do ano.

No Brasil alguns estudos foram realizados principalmente na cidade do Rio de Janeiro. Em 1984 foram quantificados 9 HPA de aerossóis atmosféricos coletados em locais de intensa tráfego de veículos automotores. As análises foram realizadas através de CLAE com detecção por fluorescência, usando coluna em fase reversa do tipo C18 (3μm, 15 cm x 4,6 mm d.i.). Os resultados demonstram uma relação direta entre as concentrações de HPA e carbono elemental (CE) sendo que a concentração deste é maior durante o dia (Tabela 6).

A razão HPA/CE é aproximadamente constante para ambos os períodos (noturno/diurno) para amostras coletadas de segunda a sexta-feira (Tabela 7).

Os dados indicam que ocorre perda por dessecação ou reação química durante o dia; que há aumento da concentração no período noturno, quando a temperatura cai e a radiação solar está ausente; e que durante a noite ocorre preferencialmente o processo de deposição sec a do CE depositado sobre partículas finas.

Miguel e de Andrade relatam a quantificação simultânea de 11 HPA coletados durante um período de 12 horas (07:00 - 19:00 h) em dois sitos de amostragem, no túnel Santa Bárbara (1,3 Km de extensão) e no bairro de Vila Isabel (área residencial-comercial), na cidade do Rio de Janeiro, em 1986. Os valores encontrados refletem a origem veicular dos HPA que estão muito mais concentrados no túnel (~ 5 a 10 vezes) do que em área residencial-comercial (Tabela 8).

Nos últimos anos aumentou o interesse por derivados de HPA devido a suas ações mutagênicas e cancerígenas. Várias investigações têm sido conduzidas visando esclarecer o mecanismo de formação de derivados de HPA na atmosfera (principalmente nitrenos) e determinar os seus níveis de concentração. A quantificação de NHPA também tem sido realizada em material particulado ambiental (MPA) coletados em várias localidades e países. Zielinska et al. determinaram as concentrações de nitroderivados em material orgânico particulado coletado no sul da Califórnia no mês de Setembro de 1985, na cidade de Claremont, e, nos meses de Janeiro e Fevereiro de 1986, em Torrance. Os valores encontrados estão na tabela 9.

A separação e identificação dos compostos foi feita em sistema CG-EM usando coluna DB-5 de 60 m. Os dados das amostras coletadas em Claremont, durante o verão, mostram que ocorre uma forte variação na concentração de 2-NF, que alcançou um máximo no período de 18:00-24:00h. Este fato sugere que 2-NF foi majoritariamente formado através da reação com N2O5 em fase vapor para em seguida ser depositado sobre partículas. A razão 2-NF/2-PF indica a importância da reação com N2O5 na formação de nitroarênios na atmosfera, especialmente 2-NF. A presença de N2O5 durante a coleta no inverno de Torrance é improvável devido aos altos

Tabela 5. Concentração de HPA em amostras de ar atmosférico.

<table>
<thead>
<tr>
<th>Local/Data</th>
<th>Método</th>
<th>Unidade</th>
<th>PHE</th>
<th>FLT</th>
<th>PYR</th>
<th>BaP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles</td>
<td>CG-EM</td>
<td>0,33</td>
<td>0,47</td>
<td>0,60</td>
<td>0,59</td>
<td></td>
</tr>
<tr>
<td>24-25/02/1986 (dia)</td>
<td>***</td>
<td>78</td>
<td>8,0</td>
<td>8,0</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>CG-EM</td>
<td>0,28</td>
<td>0,53</td>
<td>0,67</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>24-25/02/1986 (noite)</td>
<td>***</td>
<td>81,0</td>
<td>9,7</td>
<td>12,0</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Glendora</td>
<td>CG-EM</td>
<td>15,9</td>
<td>4,2</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-18/08/1986 (dia)</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glendora</td>
<td>CG-EM</td>
<td>22,4</td>
<td>5,2</td>
<td>4,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-18/08/1986 (noite)</td>
<td>**</td>
<td>14,4</td>
<td>1,0</td>
<td>5,6</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>CLAE</td>
<td>4,5</td>
<td>6,8</td>
<td>6,2</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>média anual (RM 1649)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Madri</td>
<td>CLAE</td>
<td>1,4</td>
<td>1,0</td>
<td>5,6</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>inverno de 1993</td>
<td>CME</td>
<td>3,3</td>
<td>2,1</td>
<td>5,2</td>
<td>3,9</td>
<td></td>
</tr>
<tr>
<td>Madri</td>
<td></td>
<td>29,3</td>
<td>16,7</td>
<td>24,7</td>
<td>16,4</td>
<td></td>
</tr>
<tr>
<td>verão de 1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Base Italiana/ Antártica</td>
<td>CG-EM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4/01/1991</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* material particulado; ** fase vapor; *** total
Tabela 6. Concentrações (ng m\(^{-3}\)) de HPA e CE no Rio de Janeiro.

<table>
<thead>
<tr>
<th></th>
<th>FLT</th>
<th>PYR</th>
<th>BaA</th>
<th>CHR</th>
<th>BbF</th>
<th>BkF</th>
<th>BaP</th>
<th>BgP</th>
<th>IND</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dia</td>
<td>1,49</td>
<td>1,28</td>
<td>0,97</td>
<td>1,40</td>
<td>2,29</td>
<td>1,04</td>
<td>2,62</td>
<td>4,01</td>
<td>2,86</td>
<td>11,8</td>
</tr>
<tr>
<td>Noite</td>
<td>1,08</td>
<td>1,04</td>
<td>1,09</td>
<td>1,48</td>
<td>2,53</td>
<td>1,10</td>
<td>2,80</td>
<td>3,67</td>
<td>2,74</td>
<td>8,87</td>
</tr>
<tr>
<td>N/D</td>
<td>1,38</td>
<td>1,23</td>
<td>0,89</td>
<td>0,95</td>
<td>0,91</td>
<td>0,94</td>
<td>1,09</td>
<td>1,04</td>
<td>1,33</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 7. Razão HPA/CE (n = 12 para cada período).

<table>
<thead>
<tr>
<th></th>
<th>FLT</th>
<th>PYR</th>
<th>BaA</th>
<th>CHR</th>
<th>BbF</th>
<th>BkF</th>
<th>BaP</th>
<th>BgP</th>
<th>IND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dia</td>
<td>1,13</td>
<td>0,98</td>
<td>0,70</td>
<td>1,06</td>
<td>1,83</td>
<td>0,84</td>
<td>1,99</td>
<td>3,61</td>
<td>2,41</td>
</tr>
<tr>
<td>Noite</td>
<td>1,25</td>
<td>1,10</td>
<td>1,06</td>
<td>1,53</td>
<td>2,67</td>
<td>1,19</td>
<td>2,93</td>
<td>4,33</td>
<td>3,07</td>
</tr>
</tbody>
</table>

Tabela 8. Concentrações (ng m\(^{-3}\)) de HPA no Rio de Janeiro.

<table>
<thead>
<tr>
<th></th>
<th>PHE</th>
<th>ANT</th>
<th>FLT</th>
<th>PYR</th>
<th>BaA</th>
<th>CHR</th>
<th>BbF</th>
<th>BkF</th>
<th>BaP</th>
<th>BgP</th>
<th>IND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tânel</td>
<td>96,9</td>
<td>4,19</td>
<td>69,6</td>
<td>76,3</td>
<td>51,3</td>
<td>69,5</td>
<td>88,2</td>
<td>36,7</td>
<td>90,7</td>
<td>162</td>
<td>84,2</td>
</tr>
<tr>
<td>Vila Isabel</td>
<td>15,0</td>
<td>0,49</td>
<td>7,90</td>
<td>7,92</td>
<td>9,87</td>
<td>14,6</td>
<td>3,7</td>
<td>17,6</td>
<td>19,9</td>
<td>16,1</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 9. Concentrações de nitrofluorantenos (NF) e nitropirenos (NP) em MPA.

<table>
<thead>
<tr>
<th>Local e Data</th>
<th>Período de coleta (h)</th>
<th>2-NF</th>
<th>Concentração (pg m(^{-3}))</th>
<th>1-NP</th>
<th>2-NP</th>
<th>3-NF</th>
<th>8-NF</th>
<th>2-NP/8-NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claremont</td>
<td>12:00-18:00</td>
<td>40</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Torrance</td>
<td>17:00-05:00</td>
<td>750</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>50</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>24/02/86</td>
<td>18:00-06:00</td>
<td>320</td>
<td>30</td>
<td>30</td>
<td>n.q.</td>
<td>n.q.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>25/02/86</td>
<td>06:00-18:00</td>
<td>280</td>
<td>40</td>
<td>40</td>
<td>n.q.</td>
<td>n.q.</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

n.q. = não quantificado (níveis muito baixos para serem detectados)

níveis de NO observados ao por do sol. Assim sugere-se que a formação de ambos 2-NF e 2-NP ocorre somente durante o dia pela rota da reação iniciada pelo radical OH\(^{98}\).

No Brasil não existem dados sobre as concentrações de NHPA na atmosfera. Contudo, estudos estão sendo realizados por alguns grupos de pesquisa no Rio de Janeiro, RJ (PUC), São Paulo, SP (USP) e Salvador, BA (UFBA).

2. PROPRIEDADES FÍSICAS E QUÍMICAS

Os HPA atmosféricos normalmente estão adsorvidos em aerossóis submicrométricos resultando em grande área superficial que permite interações heterogêneas complexas do tipo vapor-partícula\(^{13,83}\). Entre estas destacam-se os processos fotoquímicos (reações com oxigênio e radicais livres), químicos (reações com HNO\(_3\), NO\(_2\), H\(_2\)SO\(_4\), PAN, SO\(_2\), O\(_3\) e radicais livres, etc.) ou físicos (adsorção, desorção e sublimação)\(^{1,7}\).

2.1. Propriedades físicas

A pressão de vapor do HPA determina a sua distribuição ambiental entre ar-água-solo e, também, entre as fases gasosa e aerossol na atmosfera\(^{1,83}\). A solubilidade em água também afeta a distribuição entre ar-água-solo apesar dos baixos coeficientes de solubilidade dos HPA em água pura\(^{84}\). A grande variação nas faixas de pressão de vapor (da ordem de 10\(^{7}\)) é refletida no fato de que, no ar ambiente, a 25°C, o naftaleno existe virtualmente (100%) na fase vapor enquanto o BaP e outros HPA de 5 ou mais anéis estão predominantemente adsorvidos em material particulado atmosférico. Os HPA de pressão de vapor intermediária (3 e 4 anéis) estão distribuídos em ambas as fases. A solubilidade de HPA em água é geralmente muito baixa, contudo a oxidação a espécies mais polares pode ser acelerada pelo aumento da solubilidade em água\(^{1}\). A tabela 10 mostra o coeficiente de solubilidade em água e a pressão de vapor de alguns HPA\(^{1,7}\).

2.2. Propriedades Químicas

As transformações químicas de HPA em fase vapor vem sendo bastante estudadas, principalmente a partir do ano de 1950. Falk et al\(^{87}\) foram os primeiros a relatar a fotodecomposição de 10 HPA depositados sobre filtro de papel e expostos ao ar sob várias condições, incluído smog sintético\(^{1}\). A possibilidade da conversão de HPA a produtos mais polares (por exemplo NHPA), na atmosfera, é desde então extensivamente investigada principalmente por meio de simulações da atmosfera em laboratório e pela formação de artefatos sobre filtros. Uma grande variedade de materiais, incluindo alumina\(^{35,36,87}\), gel de sílica\(^{88}\), celulose\(^{89}\) solo\(^{90}\), fibra de vidro\(^{91}\), material particulado atmosférico\(^{2,93}\) etc. são utilizados nos estudos.

De acordo com resultados experimentais a degradação de HPA na atmosfera depende de vários parâmetros físicos e químicos tais como composição espacial e intensidade da radiação, composição e características físicas do adsorvente (superfície específica, tamanho da partícula, grau de umidade) e também da presença e concentração de espécies químicas reativas (NO\(_x\), O\(_3\), etc.)\(^{2,94}\).

QUÍMICA NOVA, 19(5) (1996)
Tabela 10. Propriedades físicas de alguns HPA.¹

<table>
<thead>
<tr>
<th>HPA</th>
<th>Estrutura</th>
<th>Pressão de Vapor (mmHg)</th>
<th>Solubilidade/água (µgL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftaleno</td>
<td></td>
<td>7,8x10⁻²</td>
<td>31,700</td>
</tr>
<tr>
<td>NAF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoreno</td>
<td></td>
<td>6,0x10⁻⁴</td>
<td>1,980</td>
</tr>
<tr>
<td>FLU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenantreno</td>
<td></td>
<td>1,2 x 10⁻⁴</td>
<td>1,290</td>
</tr>
<tr>
<td>PHE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranteno</td>
<td></td>
<td>9,2 x 10⁻⁴</td>
<td>260</td>
</tr>
<tr>
<td>FLT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antraceno</td>
<td></td>
<td>6,0 x 10⁻⁶</td>
<td>73</td>
</tr>
<tr>
<td>ANT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pireno</td>
<td></td>
<td>4,5 x 10⁻⁶</td>
<td>135</td>
</tr>
<tr>
<td>PYR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criseno</td>
<td></td>
<td>8,5 x 10⁻⁹</td>
<td>2</td>
</tr>
<tr>
<td>CHR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo[a]pireno</td>
<td></td>
<td>5,6 x 10⁻⁹</td>
<td>0,05*</td>
</tr>
<tr>
<td>BaP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Valor observado a 20°C.

A persistência de HPA na atmosfera tem sido objeto de muitos estudos nos últimos 40 anos. Os principais objetivos das investigações são a identificação dos produtos das reações entre HPA e poluentes gasosos, os mecanismos dessas reações e a fase em que ocorrem (adsorvido em partículas ou em fase vapor) e a determinação do tempo de meia-vida desses compostos na atmosfera.

As transformações químicas implicam em modificações das propriedades físicas dos HPA e, consequentemente, em alterações na distribuição entre as fases vapor e partícula. Isto tem influência direta nos processos de transporte atmosférico e deposição seca ou úmida.

Reações químicas entre HPA e co-poluentes podem ocorrer também durante o processo de coleta de material, constituindo-se, neste caso em artefatos de amostragem.¹⁷,³⁵,³⁶

Genericamente as reações que envolvem os HPA podem ser
A fotooxidação de HPA na atmosfera, contudo, ocorre principalmente sobre a superfície de material particulado, sendo que a fotodegradação depende muito da natureza do substrato. O antraceno, adsorvido em alumina ou gel de sílica, é rapidamente convertido a antraquinona sob ação da luz em

Esquema 5. Fotooxidação do benzo[a]pireno em solução.
A presença de oxigênio. O endoperóxido não aparece como intermediário desta reação. A oxidação posterior do produto da reação fornece a 1,4-didroxi-9,10-antraquinona (Esquema 6). O grau de oxidação é dependente do adsorvente utilizado.

Esquema 6. Fototrocação de antraceno adsorvido em gel de sílica ou alumina.

Vários HPA quando submetidos à ação da luz natural ou artificial, sobre placas de cromatografia em camada delgada (gel de sílica ou alumina), em presença de oxigênio, formam produtos de oxidação. O pirenó por exemplo é oxidado a 1,6-diona e 1,8-diona correspondentes (Esquema 7).17

Esquema 7. Fototrocação de pirenó sobre placa de alumina ou gel de sílica.

A velocidade do processo de fototransformação depende essencialmente da radiação, embora possa ser acelerado pelo smog fotoquímico sintético. Por exemplo quando o BaP, adsorvido sobre fuligem ou filtro, é exposto a radiação de intensidade variável, por 48 horas, há 10% de transformação. A exposição por uma hora, em presença de smog sintético (contendo oxidantes não naturais na concentração de 30 ppm), provoca 50% de destruição do BaP. Este e outros estudos realizados em laboratório indicam que o tempo de meia-vida dos HPA na atmosfera pode variar de minutos ou horas a dias.22,23,100,101

2.2.2. Reação com oxigênio

O oxigênio é um poluente secundário presente na troposfera e, também, uma das espécies químicas mais reativas. Reage com os HPA formando vários tipos de compostos. Muitos trabalhos na literatura relatam reações entre oxigênio e HPA adsorvidos em filtros.22,23,104,105,106

A oximolise de benzo[a]antraceno é um exemplo característico que conduz a diácidos e quinona (Esquema 8). A reação envolve uma quebra de ligações nas posições mais reativas, 5,6, para formar diácidos ou a oxidação em 7,12 para produzir a quinona correspondente.7,107

Esquema 8. Reação entre benzo[a]antraceno e oxigênio em laboratório.

Em condições atmosféricas é muito provável a produção de diácidos passando por um intermediário do tipo molozonídeo (Esquema 9).

Esquema 9. Provável formação de diácidos em condições atmosféricas.

Contudo, uma segunda rota para a produção de quinona também é postulada. Esta envolve o ataque eletrofílico do oxigênio sobre o anel aromático fornecendo um intermediário hidroxilado que, rapidamente, é oxidado a quinona (Esquema 10).

Esquema 10. Reação de adição de oxigênio ao BaA.

Esta forma de ataque do oxigênio ao anel aromático pode ser uma importante rota na oxidação do benzo[a]pireno que fornece uma mistura de 3,6-diona e 1,6-diona na proporção de 3:1, acompanhado de traços do isômero 4,5-diona.108

2.2.3. Formação de íons-radicalis

O processo de oxidação pela perda de um elétron é muito comum em alguns HPA. Os cátons-radicalis formados são bastante instáveis e reagem rapidamente com água e outros nucleofílos fornecendo produtos de oxidação. Por exemplo o BaP é oxidado anodicamente ao cátion-radical correspondente que reage com água fornecendo a 1,6-diona e outras duas quinonas. Pequenas quantidades de dímeros também são formadas principalmente na superfície do eletrodo (Esquema 12).7,109,110

Esquema 12. Oxidação eletroquímica do BaP.

Os cátons-radicalis são também formados pelo tratamento de HPA com ácidos de Lewis fortes. A adsorção sobre alumina ou gel de sílica também pode provocar a formação de íons-radicalis. Estes processos ocorrem, particularmente, em presença de oxigênio.

2.2.4. Reações com óxidos de nitrogênio

Os HPA, principalmente os mais pesados (maior número de anéis), são extremamente sensíveis à oxidação e substituição eletroquímica. Óxidos de nitrogênio e ácido nitrico diluído podem interagir com HPA resultando em reações de adição, substituição ou oxidação. O antraceno é facilmente oxidado por ácido.
nitrático diluído ou óxidos de nitrogênio fornecendo a antraquinona. Pela ação do NO₂ o antraceno é convertido em 9-nitroantraceno (Esquema 13). O benzo[a]pireno é rapidamente nitrado com ácido nitrático diluído em ácido acético ou benzeno, à temperatura ambiente, fornecendo o derivado mononitrado como produto principal).

\[
\text{Esquema 13. Reação do ANT com HNO₃ e com NO₂.}
\]

O alto grau de mutagenicidade dos nitroderivados de HPA, aliado à constatação de que muitos deles são amplamente distribuídos no ambiente, resultou em crescente interesse pelas reações entre esses hidrocarbonetos e óxidos de nitrogênio.

O processo secundário de produção de NHPA na atmosfera, discutido no tópico 1.3 (Esquemas 1 e 2), envolve reações com OH/NO₃ e N₂O₅ sendo considerado hoje de grande importância ambiental[15,111]. A quantificação de 2-nitropiroreno e 2-nitrofluorenona em material particulado atmosférico demonstra que estes nitroderivados estão em maiores concentrações que os isômeros provenientes da emissão direta (Tabela 7, tópico 1.3). Recentemente foi caracterizada uma nova classe de nitroderivados de HPA, as nitrolactonas, isoladas tanto de reações simuladas em laboratório como de amostras ambientais[15,51].

Helming et al estudaram a reatividade de uma série de HPA sob condições simuladas de atmosfera ambiental (em câmara de reação ambiental). A reação em fase vapor de fenantreno com radical OH em presença de NO₂ fornece, entre outros produtos, os derivados 2 e 4-nitro-6H-dibenzo[b,d]piran-6-ona (Fig. 7). Estes novos nitroderivados foram identificados por cromatografia de gás acoplada a espectrometria de massas. A mutagenicidade de frações obtidas por CLAE foi testada, sendo atribuída principalmente a 2-nitro-6H-dibenzo[b,d]piran-6-ona que apresenta atividade muitas vezes superior ao isômero substituído na posição 4[51,52].

\[
\text{Figura 7. Nitrolactonas obtidas da reação entre fenantreno e OH/NO₂ em fase vapor.}
\]

As duas nitrolactonas obtidas da reação com o fenantreno foram também identificadas em amostras ambientais enquanto outras nitrolactonas, por exemplo as nitropirenolactonas, são extensivamente investigadas em material ambiental. Da reação do pireno com o radical OH em presença de NO₂ foram também identificadas, com base nos dados de espectrometria de massas, duas novas lactonas isômeras, 1 e 3-nitro-5H-fenantro[4,5-bcd]piran-5-ona, que apresentaram potente atividade mutagênica medida pelo ensaio Ames-Salmonella. O mecanismo de formação de nitrolactonas, no ambiente ou em câmaras de reação, ainda não está esclarecido[12].

O fluorenona é um dos mais abundantes HPA identificados em processos de combustão e em amostras de ar ambiental. Sob condições atmosféricas é esperado que o principal processo de remoção seja a reação com o radical OH. Helming et al[13,114] investigaram a reação de fluorenona iniciada com OH em presença de NO₂ e, entre outros produtos, foram identificados todos os nitrofluorenos isômeros (1-5%) e a fluorenona (9%).

Estes resultados permitem supor que os nitrofluorenos presentes na atmosfera são formados através de reações iniciadas pelo radical OH. Os principais nitroderivados foram os 1 e 3-nitrofluoreno distintos do produto principal de reações eletrofílicas, o 2-nitrofluorenona, que é o principal derivado na emissão de motores a diesel. O rendimento de fluorenona na reação é semelhante ao consumo de OH. Isto sugere que a conversão do fluorenona passa pela abstração de H pelo radical OH seguido de outras transformações (Esquema 14)[11,112].

\[
\text{Esquema 14. Formação de fluorenona em fase vapor.}
\]

A reação de HPA com HNO₃ e NOₓ na atmosfera continua sendo extensivamente investigada. Reações em atmosferas simuladas e com substratos adsorvidos em filtros são os principais recursos hoje utilizados nessas pesquisas.

2.2.5 Outras reações

Outras substâncias químicas presentes na atmosfera poluída podem, também, reagir com os HPA. Por exemplo são relatados vários estudos sobre as reações entre HPA e SO₄, nitrato de peroxiacetila (PAN) e radicais livres[1,7,14,35,37]. Nenhuma das reações, contudo, têm a importância das que foram referidas anteriormente.

3. AMOSTRAGEM

Os HPA e outros compostos orgânicos semivoláteis (COS), com pressão de vapor entre 10⁻⁸ e 10⁻¹ atm à temperatura ambiente, existem no ar como vapor ou adsorvidos em material particulado. A razão de distribuição vapor-partícula é controlada pela pressão de vapor do COS e pela concentração total de partículas em suspensão[1,3,5,57,115].

O material particulado atmosférico (MPA) é geralmente coletado do ar em amostradores de grande volume (também conhecidos como Hi-Vol na literatura internacional), por meio de sucção, com fluxo de 1,2 - 1,7 m³ min⁻¹. Este sistema utiliza um filtro para a retenção do material particulado e um adsorvente (sólido poroso) para reter os componentes em fase vapor (Fig. 8). Dependendo de como varia a temperatura e a concentração das espécies químicas, durante o período de coleta, pode haver diminuição ou aumento da concentração de COS sobre o filtro. As perdas podem ocorrer por degradação química ou por volatilização (deboxorção)[35,37,115].

Uma alternativa ao Hi-Vol é a utilização de um sistema de difusão em tubos de vidro também chamado de denuder. O material particulado e os COS, em fase vapor, passam através de um sistema de tubos cilíndricos com a parede interna revestida com um sólido adsorvente ou um líquido de alto ponto de ebulição. Neste tipo de amostrador as moléculas do vapor são removidas da corrente de ar pelo processo de difusão, ficando retidas sobre as paredes do denuder. O material
partículado difunde mais lentamente, passa através do denuder e é então retido sobre o filtro. Os COS são parcialmente removidos das partículas pela corrente de ar sendo coletadas na seção do sólido adsorvente. A soma dos COS retidos no filtro e no adsorvente representa a fração contida no material partículado do ar ambiental. A completa remoção de componentes da fase vapor pelo denuder é essencial para o sucesso deste método (Fig. 9).

Figura 9. Sistemas de coleta de ar atmosférico (amostragem)

Os filtros utilizados são de material inerte, e.g., fibra de vidro ou quartzo, Teflon®, poliestireno, entre outros materiais e, como adsorvente utiliza-se Tenax®, espuma de poliuretana, porapak®, peneira molecular etc.

Em estudos recentes Subramanyam et al. investigaram a distribuição vapor-partícula de HPA em atmosferas urbanas. Os compostos menos voláteis (maior peso molecular) foram observados predominantemente na fase partículada e os mais voláteis (menor peso molecular), na fase vapor. Compostos de volatilidade intermediária como feniltrieno e fluoranteno foram observados em ambas as fases. Compostos menos voláteis que o pirene raramente foram encontrados na fase vapor em amostras de ar coletadas com o sistema Hi-Vol. Observaram que os artefatos de amostragem, usando o Hi-Vol, podem causar significativos erros na estimativa de coeficiente de partição de COV. Finalmente sugerem que os amostradores (modificados) de pequenos volumes e os denuders podem ser utilizados na obtenção de medidas mais precisas do coeficiente de distribuição vapor-partícula.

É fato conhecido que muitos co-poluentes ambientais reagem com HPA sob condições simuladas de ar atmosférico e vários derivados de HPA já foram identificados em materiais coletados de atmosferas urbanas. Muitos estudos evidenciam a formação desses derivados, e.g., NHPA, no processo de coleta em Hi-Vol e outros tipos de amostradores.

Deste modo, a formação de artefatos durante o processo de amostragem, incluindo a reação com oxidantes como o ozônio, tem sido objeto de constantes investigações.

Os resultados obtidos por Coutant et al. sugerem fortemente que, após a coleta, as perdas de BaP associado ao material partículado, por processo oxidativo devido ao ozônio, são negligenciáveis. O mesmo estudo indica que HPA de 3 e 4 ânios existem parcialmente na fase vapor e que, durante a amostragem, pode ocorrer a formação de artefatos como resultado da volatilização destes compostos. Estudo da reação entre HPA depositados sobre gel de sílica e ozônio indicam que a reatividade depende da superfície adsorvente.

Estudos realizados por Knupp e Umlauf indicam que a formação de artefatos em amostras de material partículado atmosférico, coletadas sobre fibra de vidro, é menos drástica do que discutido anteriormente na literatura.

Um outro tipo de amostrador utilizado na coleta de material partículado é o impactador em cascata que é especialmente útil quando o objetivo é a coleta de acordo com o tamanho da partícula. Contudo, apresenta a desvantagem de exigir um maior tempo de amostragem devido à baixa velocidade do fluxo de ar. Neste sistema os aerossis são desviados da direção do fluxo de ar pelas forças inerciais e colidem com os obstáculos (placas de) onde são coletados. Os impactadores em cascata têm pelo menos dois estágios constituídos de dispositivos mecânicos arranjados em série (Fig. 10).

Figura 10. Princípio da coleta por impactação em cascata

Um impactador de baixa pressão, com fluxo de 1L min⁻¹, constituído de 8 estágios, foi utilizado por Miguel na separação de aerossis atmosféricos de acordo com o diâmetro da partícula (Tabela 11). Este estudo permitiu a quantificação de BaP em cada uma das frações e a caracterização da sua distribuição na atmosfera por tamanho de partícula.

Outros sistemas são também utilizados na coleta de material partículado como por exemplo o precipitador eletrostático e o amostrador de Andersen (um tipo especial de amostrador em cascata).

A quantidade de ar a ser amostrada depende da concentração da espécie a ser quantificada. Os NHPA estão em menores concentrações que os HPA, na atmosfera, o que exige um maior volume de ar na coleta do material partículado.

Tabela 11. Distribuição por tamanho da partícula no amostrador em cascata

<table>
<thead>
<tr>
<th>Estágio</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Filtro</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.p. (μm)</td>
<td>> 4,0</td>
<td>2,0</td>
<td>1,0</td>
<td>0,5</td>
<td>0,26</td>
<td>0,12</td>
<td>0,075</td>
<td>0,05</td>
<td>< 0,05</td>
</tr>
</tbody>
</table>

508 QUÍMICA NOVA, 19(5) (1998)
HPA coletados sobre filtros de Teflon® ou adsorvidos em espuma de poliuretana, quando acondicionados em recipiente fechado, à temperatura ambiente e ao abrigo da luz, são estáveis por um período de tempo relativamente longo (até ca. 118 dias)\(^{12}\). Contudo, independente do sistema de coleta, as amostras devem ser analisadas o mais rápido possível para evitar qualquer risco de perdas por degradação, sublimação ou outros processos.

4. METODOLOGIA ANALÍTICA

Entre as principais metodologias analíticas para a quantificação de HPA e NHPA na atmosfera estão os métodos cromatográficos, espectroscópicos e voltamétricos ou polargráficos. Neste trabalho é destacada a cromatografia não somente por ser uma técnica analítica das mais utilizadas mas, também, devido a característica de versatilidade que permite o seu uso na purificação da amostra, fracionamento e pré-concentração, separação, identificação e quantificação de componentes\(^{1,4,3,5,36,126}\).

4.1. Extração, fracionamento e pré-concentração da amostra

O aerosol atmosférico coletado sobre filtros constitui o principal material ou amostra do ar ambiental utilizado na quantificação de HPA e NHPA. Devido a sua complexidade o material particulado atmosférico (MPA) é previamente fracionado e concentrado em HPA por meio de técnicas cromatográficas (cromatografia em camada delgada, cromatografia em coluna, microcolunas tipo SEP-PAK® ou CLAE)\(^{25,26,417}\) ou por extração\(^{38,129}\).

O procedimento básico de fracionamento e pré-concentração envolve, em primeira etapa, a extração do material particulado com dicrotermato, em acoarelo de Soxhlet\(^{160}\), ou a utilização do processo de extração por sonicação\(^{27}\) usando solventes como dicrotermato ou acetona, seguido de filtragem. O extrato é então separado/pré-concentrado através de cromatografia em uma microcoluna SEP-PAK® usando dicrotermato como eluente e, depois, por meio de CLAE em fase normal usando hexano/dicrotermato em gradiente de concentração. A separação posterior, identificação dos componentes e quantificação é feita geralmente através de CLAE em fase reversa ou por cromatografia de gás acoplada a espectrometria de massas (CG-EM) (Fig. 11)\(^{35,36}\).

A extração deve ser conduzida de modo a assegurar o máximo de recuperação. A contaminação da amostra e a degradação durante esse processo pode ser minimizada através de um rigoroso controle da vidraria e solventes utilizados. A eficiência dessa etapa analítica é fundamental para o resultado final da análise de HPA\(^{30}\). A extração de HPA e NHPA de material particulado é feita, também, com fluidos supercíclicos usando, e.g., CO\(_2\) ou CHCl\(_2\)F/CO\(_2\)\(^{131,132,133}\).

Estudos comparativos da extração de compostos orgânicos de amostras sólidas, usando Soxhlet ou ultrasom, demonstram que os índices de recuperação são muito próximos ou equivalentes\(^{126,134,135,156}\). A extração de amostras de solo com Soxhlet usando acetona/hexano apresenta recuperação em geral superior ao método de sonicação com acetona/cloroeto de metíleno. Em alguns casos, contudo, a sonicação pode ser mais eficaz e.g., para amostra de solos em baixos níveis de concentração (menos que 1-2 mg/g de HPA)\(^{25}\). Para amostras de MPA o método de sonicação com acetamina demonstra ser mais eficiente que a extração com Soxhlet. O método do ultrasom apresenta ainda as seguintes vantagens: a reproduzibilidade da técnica, utilização para uma ampla faixa de tamanhos da amostra, baixo custo, pequeno número de interferentes e rapidez no processamento da amostra\(^{26,135}\). As vantagens do ultrasom na extração de compostos polares foi recentemente questionada por Carvalho, L.R.F. et al o que coloca esta técnica sob suspeita\(^{138}\).

4.2. Métodos cromatográficos

Devido a versatilidade, eficiência e sensibilidade os métodos cromatográficos são os mais utilizados na análise de HPA e NHPA de material atmosférico ambiental e de outras matizes ou materiais. Dentre as várias técnicas cromatográficas destacam-se a cromatografia líquida de alta eficiência (CLAE), a cromatografia gasosa de alta resolução (CGAR) e a cromatografia gasosa acoplada a espectrometria de massas (CG-EM).

A discussão básica sobre instrumentação, colunas, detectores, teoria da separação etc., aqui tratada, é limitada aos aspectos de importância na análise de HPA e NHPA. Artigos de revisão sobre Cromatografia Planar\(^{139}\), Cromatografia Gasosa\(^{140}\) e Cromatografia Líquida\(^{141,142,143}\) têm sido constantemente publicados e estão disponíveis na literatura.

4.2.1. Cromatografia Líquida de Alta Eficiência (CLAE)

A cromatografia líquida de alta eficiência tem sido extensivamente utilizada na análise de HPA, principalmente a partir do ano de 1970 quando o seu uso foi bastante ampliado. A eficiência da separação por CLAE não é tão boa quanto às modernas técnicas de cromatografia gasosa (CG) que utilizam colunas capilares de alta resolução. Contudo, a CLAE apresenta algumas vantagens que a tornam uma técnica ainda muito utilizada na separação e quantificação de HPA coletados de diversas matizes e materiais. Primeiro, oferece uma grande variedade de fases estacionárias cuja seletividade permite a resolução até mesmo de isômeros que são mais difíceis de separar por meio de CG. Na CLAE a interação do soluto ocorre tanto com a fase móvel quanto com a fase estacionária enquanto na CG ocorre somente com a fase estacionária. A detecção dos componentes pode ser feita por absorção no ultravioleta (HPA e NHPA), espectroscopia de fluorescência (HPA) ou através do detector eletroquímico (NHPA), métodos de alta sensibilidade. A CLAE também é muito utilizada no fracionamento e pré-concentração da amostra\(^{35,36,126,143,144,145}\).

A separação de HPA por cromatografia líquida (CL) pode ser feita pelo método clássico, em fase normal, usando gel de
sérica ou alumina como adsorvente; em fase reversa, usando fase estacionária apolar quimicamente ligada, e.g., C₁₆; em fase normal (polar) quimicamente ligadas, e.g., NH₂, CN, R(ODH)₂ etc.; e através da estereooexclusão ou permutação em gel. Os dois primeiros modos são os mais amplamente utilizados na CL em geral e o segundo é o mais utilizado na CLAE³⁵,³⁶,¹⁴⁶.

A ordem de eluição para os métodos acima descritos, exceto permutação em gel ou exclusão, é muito similar. Ou seja, a retenção aumenta com o número de carbons ou peso molecular. O índice de retenção de vários HPA, para as fases normal e reversa, estão descritos na literatura¹⁴⁷,¹⁴⁸ e têm sido usados como base para novas investigações⁴⁹.

As colunas de cromatografia em fase reversa são constituídas de hidrocarbonetos com cadeias de 2, 8, ou 18 átomos de carbono quimicamente ligados à partícula de gel de sílica. A fase ligada C₁₈ (octadecilsilicone) é a mais amplamente utilizada na CLAE. O eluente é mais polar que a fase estacionária e consiste geralmente de misturas de água e um solvente orgânico, e.g., metanol ou acetonitrila⁵⁰,⁵²,⁵³,⁵⁴,⁵⁵,⁵⁶,⁵⁷.

A fase ligada C₁₆ pode ser do tipo monomérica ou polimérica. A maioria das colunas C₁₆ disponíveis comercialmente são do tipo monomérica que apresentam um alto grau de reprodutibilidade. O mesmo não acontece com as colunas poliméricas que apresentam variação na superfície da cobertura, para diferentes lotes, resultando também em diferentes seletividades.³⁵,³⁶,¹⁴⁸,¹⁴⁹.

O mecanismo de retenção por cromatografia em fase ligada não é completamente conhecido. A sua melhor compreensão irá permitir o desenvolvimento de fases estacionárias em alto grau de reprodutibilidade para a resolução de misturas.⁵⁰,⁵¹,⁵²,⁵³,⁵⁴,⁵⁵

A cromatografia multidimensional consiste da separação por CLAE em fase normal (grupo polar quimicamente ligado à fase estacionária) seguido de separação (das várias frações obtidas) por CLAE em fase reversa (usando, e.g., coluna C₁₆) ou por CG ou CG-EM. Esta metodologia é geralmente utilizada quando a complexidade das amostras exige a combinação de técnicas para uma separação adequada.¹⁴⁶,¹⁵⁰,¹⁵³.

Uma das vantagens da CLAE na quantificação de HPA é a disponibilidade de detectores sensíveis e seletivos. Os mais utilizados são os detectores por absorção no ultravioleta (UV) e fluorescência que podem ser usados em série. O detector por absorção no ultravioleta é mais universal enquanto que o detector por fluorescência apresenta maior seletividade e especificidade. Este último não se aplica à análise de NHPA devido ao efeito quenching - a fluorescência é praticamente anulada pela presença do grupo nitro como substituinte no anel aromático. As alternativas para a análise de NHPA por CLAE são a redução catalítica on column aos amino-HPA correspondentes, permitindo assim a detecção por fluorescência, ou a utilização de detector eletroquímico⁵³,⁵⁴,⁵⁵,⁵⁶,⁵⁷.

A presença de oxigênio interfere no sistema de detecção por fluorescência molecular e, também, na detecção por amperométria redutriva. A remoção do oxigênio dissolvido na fase móvel é, portanto, condição necessária para uma boa reprodutibilidade e sensibilidade do método. Isto pode ser feito pelo método clássico de degasificação (sonicação e vácuo) e, adicionalmente, por meio da retenção on line, e.g., utilizando uma coluna contendo zinco.¹⁵⁵

A detecção de componentes separados através da CLAE pode ser feita também com outros tipos de detectores como o detector por quimioluminescência (DQL), detector por absorção no infravermelho (CL-IV) e detector por espectrometria de massas (CL-EM).

Os limites de detecção no UV depende do coeficiente de absorvividade molar do HPA e do comprimento de onda fixado no instrumento. Por exemplo, para o PYR, CHR e BaP foram determinados, a 254 nm, os limites de 85, 46 e 31 pg, respectivamente.³³,³⁶,¹⁵⁶.

O detector por fluorescência apresenta limites de detecção muito baixos, sendo portanto, um dos métodos mais sensíveis para determinação de HPA¹⁵⁷. Utilizando uma coluna Hyperil Grem PAF⁸ (10 x 0,46 cm d.i.) Kayali et al. encontraram limites de detecção entre 0,012 pg mL⁻¹ para o fluorenteno e 0,45 pg mL⁻¹ para o naftaleno (Tabela 12)⁷⁸.

Para os NHPA são relatados limites de detecção entre 0,01 - 1 ng (DEQ, coluna 50 cm x 1 mm d.i.), 10 - 100 pg (DEQ, coluna 25 cm x 4 mm d.i.), 1 - 25 pg (DPF/amina-derivado) e 3 ng (UV)⁴⁵.

Nos últimos anos, além da fluorescência convencional (FC) tem sido utilizado o método de detecção por fluorescência induzida a laser (FIL) em análises de compostos orgânicos por meio de CL. A detecção através de FIL, contudo, é usada somente quando a detectabilidade do analito pode ser melhorada, em comparação com a FC, o que varia muito com o tipo de composto. Estudo comparativo entre os limites de detecção do BaP, determinados pelos dois métodos, mostra uma razão FC/FIL = 10 (utilizando um laser de nitrogênio) o que confere ao sistema de detecção a laser uma excelente sensibilidade.¹⁵⁸

As novas tecnologias e investigações sobre métodos de migração diferencial têm permitido o desenvolvimento de novas técnicas de separação cromatográfica. Um exemplo recente é a Cromatografia Micelar Eletrocinética (CME) que constitui um tipo específico de CLAE. Nesta técnica o fenômeno eletrocinético, em uma coluna tubular aberta, move duas fases, uma micelar e outra aquosa, em diferentes velocidades. A fase móvel é uma solução surfactante (e.g., solução micelar de dodecilsulfato de sódio) em concentração acima da concentração crítica micelar. A solubilização micelar atua como um processo de distribuição do soluto entre as fases, permitindo a separação dos componentes de misturas.¹⁵⁹,¹⁶⁰ Publicações recentes relatam o uso desta técnica na separação e quantificação de HPA, com detecção por fluorescência (FC) ou FIL com ótimos resultados.⁹⁵,¹⁶¹

4.2.2. Cromatografia Gasosa

Desde 1960 a cromatografia gasosa tem sido um dos principais métodos para a detecção de compostos orgânicos tóxicos em atmosferas urbanas e de zonas industriais. A modernização dos instrumentos nos últimos anos, a fabricação de detectores altamente sensíveis, de colunas capilares de alta resolução e a utilização de técnicas acopladas como CG-EM e CG-IV tornaram possível um considerável aumento da seletividade e eficiência deste método da análise de poluentes atmosféricos. Permitiram também, a diminuição dos limites de detecção e maior rapidez e precisão na identificação de componentes de misturas complexas de variada natureza e toxicidade. O desenvolvimento tecnológico que permitiu a construção de colunas capilares com fases estacionárias imobilizadas, termicamente estáveis, bem como a fabricação de colunas capilares de sílica fundida e de quartz e a utilização de fases estacionárias quíricas, tornaram a CG um instrumento capaz de resolver as mais complexas e difíceis separações.¹⁴⁰,¹⁶²

O alto poder de resolução das colunas capilares além de outras vantagens como maior sensibilidade e eficiência, em relação às colunas empacotadas, determinaram a sua preferência e ampla utilização na análise de HPA e NHPA.¹⁴,³⁶,¹⁴⁵.

Tabela 12. Limites de detecção de HPA por CLAE-fluorimetria.

<table>
<thead>
<tr>
<th>HPA</th>
<th>NAF</th>
<th>FLU</th>
<th>PHE</th>
<th>ANT</th>
<th>FLT</th>
<th>PYR</th>
<th>CHR</th>
<th>BaA</th>
<th>BaP</th>
</tr>
</thead>
<tbody>
<tr>
<td>pg/µL</td>
<td>0,45</td>
<td>0,15</td>
<td>0,05</td>
<td>0,045</td>
<td>0,012</td>
<td>0,015</td>
<td>0,05</td>
<td>0,025</td>
<td>0,02</td>
</tr>
</tbody>
</table>

510 QUÍMICA NOVA, 19(5) (1996)
Um grande número de colunas capilares são disponíveis comercialmente, de diversos fabricantes, marcas e tipologias. As colunas mais utilizadas são de sílica fundida e têm entre 20 e 50 m de comprimento, diâmetro interno entre 0,2 e 0,4 mm e espessura da fase estacionária entre 0,1 e 0,3 μm. A composição da fase estacionária também é bastante variada e a escolha é feita em função da eficiência e poder de resolução para misturas específicas. As fases estacionárias de polaridade baixa a intermediária são as mais utilizadas na separação de HPA, e.g., metilsilicone com grupos fenil (5%) e vinil (1%) (SE-54) e DQ. Os vários detectores de CG como detector de elétrons (DCE), fósforo e nitrogênio (DFN), ionização em chama (DIC), quimiluminescência (DQL), espectrometria de massas (EM) e infravermelho (IV-TF) oferecem de bom a excelente grau de sensibilidade e seletividade na análise de compostos orgânicos. Os principais detectores de CG utilizados na quantificação de poluentes atmosféricos, os seus limites de detecção e seletividade são mostrados na Tabela 13.

O detector mais utilizado na análise de HPA é o DIC que tem boa sensibilidade (limites de detecção de 20-60 pg), porém, apresenta a inconveniência da baixa seletividade. Por ter uma resposta de caráter geral este detector é ideal para muitas classes de substâncias, mas, necessita de um rigoroso procedimento de pré-tratamento da amostra para eliminar os possíveis compostos interferentes. Os detectores DCE e DFN têm boa seletividade, os limites de detecção são, respectivamente, de 25-80 pg e 1-10 ng e são utilizados especialmente na análise NHPA. O detector por quimiluminescência (DQL) também tem sido utilizado na quantificação de NHPA, apresentando excelente especificidade e seletividade para a análise de misturas complexas de produtos de combustão do carvão e material particulado da emissão de motores a diesel. Este sistema de CG-DQL apresenta limites de detecção da ordem de 25 pg, para o 1-nitropireno, enquanto que o método CG-EM está na faixa de 1-10 ng.

O hidrogênio é a fase móvel mais utilizada na análise por CG, especialmente nos sistemas de alta resolução com colunas capilares onde é considerado o gás de arraste ideal. O hidrogênio apresenta uma série de vantagens em relação ao nitrogênio, e.g., melhor sensibilidade, menor tempo de análise e melhor resolução. O hélio também é uma escolha melhor que o nitrogênio sendo o gás mais utilizado no sistema CG-EM.

Na Tabela 14 estão resumidas as condições e características de algumas colunas capilares utilizadas em análises de HPA.

Os sistemas CG-EM e CG-IV são os métodos mais adequados à identificação de compostos orgânicos em amostras dos mais diversos materiais. A espectroscopia de infravermelho (IV) é das técnicas mais adequadas para a identificação e discriminação de moléculas e, por este motivo, a CG combinada com IV com transformação de Fourier é uma poderosa instrumento na caracterização de isómeros de HPA e NHPA. Análises quantitativas de amostras reais por CG-IV-TF são raras na literatura devido à baixa sensibilidade do método.

Os sistemas acoplados CG-EM têm excelente sensibilidade sendo amplamente utilizados nas análises qualitativa e quantitativa de compostos orgânicos. Em relação aos HPA e NHPA apresentam boa sensibilidade, é muito útil na caracterização estrutural, contudo, a discriminação de isómeros não é satisfatória. A quantificação de 10 HPA em aerosóis atmosféricos e em fase vapor (concentrações entre 0,2 e 1,2 pg m⁻³) demonstra o alto grau de sensibilidade e os baixos limites de detecção da técnica CG-EM na análise de HPA.

Tabela 13. Detetores em cromatografia gasosa com coluna capilar

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Aplicação</th>
<th>Limite de detecção (pg)</th>
<th>Seletividade</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC</td>
<td>Ampla compostos orgânicos</td>
<td>20</td>
<td>Baixa</td>
</tr>
<tr>
<td>DCE</td>
<td>Seletiva halogenados, nitrilas etc.</td>
<td>0,5</td>
<td>Alta</td>
</tr>
<tr>
<td>DQL</td>
<td>Seletiva compostos N e S</td>
<td>1-10</td>
<td>Alta</td>
</tr>
<tr>
<td>DFN</td>
<td>Seletiva compostos N e P</td>
<td>1 (N)</td>
<td>Alta</td>
</tr>
<tr>
<td>EM</td>
<td>Universal ou seletiva</td>
<td>0,5 (P)</td>
<td>Alta</td>
</tr>
<tr>
<td>IV-TF</td>
<td>Universal ou seletiva</td>
<td>200</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Tabela 14. Colunas capilares utilizadas na separação de HPA

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Fase Estacionária</th>
<th>Comp.</th>
<th>d.i</th>
<th>.filme</th>
<th>Detector</th>
<th>Amastração</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vidro</td>
<td>OV-1⁶⁻</td>
<td>50</td>
<td>0,34</td>
<td></td>
<td>DIC</td>
<td>Aerosol</td>
<td>166</td>
</tr>
<tr>
<td>Sílica fundida</td>
<td>DB-5³⁻</td>
<td>30</td>
<td>0,22</td>
<td></td>
<td>DCE ⁶⁻Ni</td>
<td>Aerosol</td>
<td>44</td>
</tr>
<tr>
<td>Sílica fundida</td>
<td>DB-5⁻</td>
<td>46</td>
<td>0,25</td>
<td>0,25</td>
<td>EM-IE 70eV</td>
<td>Padrão</td>
<td>167</td>
</tr>
<tr>
<td>Sílica fundida</td>
<td>SE-54-ATB⁻</td>
<td>20</td>
<td>0</td>
<td></td>
<td>DIC</td>
<td>MP/diesel</td>
<td>168</td>
</tr>
<tr>
<td>Sílica fundida</td>
<td>SE-54-ATB⁻</td>
<td>30</td>
<td>0,32</td>
<td>0,25</td>
<td>DQL</td>
<td>MP/diesel</td>
<td>165</td>
</tr>
<tr>
<td>Sílica fundida</td>
<td>SE-54⁻</td>
<td>50</td>
<td>0,25</td>
<td>0,25</td>
<td>EM-IE 70eV</td>
<td>Padrão</td>
<td>169</td>
</tr>
<tr>
<td>Sílica fundida</td>
<td>XTI-5⁻</td>
<td>30</td>
<td>0,32</td>
<td></td>
<td>EM-IQ</td>
<td>Padrão</td>
<td>169</td>
</tr>
</tbody>
</table>

ATB = azo-terc-butano
metro:comprimento). Partículas de tamanho uniforme (~60 mesh) de alumina neutra ou gel de sílica são os adsortentes mais utilizados. A eluição geralmente é feita com solventes orgânicos apolares ou de baixa polaridade (hexano, ciclo-hexano, benzeno, tolueno, dicrolometano). Microcolunas, e.g., SEP-PAK® de gel de sílica ou C18 (fase reversa), de 1 a 2 cm de diâmetro por 2-3 cm de comprimento são também muito utilizadas no fracionamento e pré-concentração de misturas de COP 35,36,140,141. A cromatografia por adsortão em coluna em aparelho de Soxhlet modificado, é um sistema que tem sido muito utilizado, principalmente na separação/purificação de NHPA obtidos por processos sintéticos. Apresenta a vantagem de ter o eluente reciclado, por vaporização-condensação, com uma grande redução da quantidade utilizada 14. A técnica de CCD utiliza os mesmos adsortentes da CAC, porém, com partículas de menores tamanho (~230 mesh) e, também, os mesmos eluentes. Pode ser utilizada com a finalidade preparativa (20g adsortente/placas de 20 x 20 cm) ou analítica (placas de 2,5 x 7 cm). As principais vantagens são a economia de solvente, a rapidez da análise e a obtenção de informações para a posterior separação em coluna. Apresenta, contudo, a desvantagem de acelerar os processos de degradação de HPA através da fotooxidação (ar, luz) ou rearranjo/isomerização catalisada pelo adsortente (superfície ativa da sílica ou alumina) 36.

4.3. Métodos espectrométricos

Os principais métodos espectrométricos utilizados na análise de HPA e NHPA são a espectroscopia nas regiões do ultravioleta-visível (UV-VIS), infravermelho (IV), ressonância magnética nuclear (RMN) e a espectrometria de massas (EM). Os métodos de UV-VIS e EM são amplamente utilizados como sistemas de detecção de métodos cromatográficos como CLAE e CGAR 35,36. Os métodos espectroscópicos são hoje os principais instrumentos para a identificação de moléculas orgânicas incluindo a discriminação de isómeros. A confirmação da identidade de substâncias já catalogadas é feita por comparação de espectros. Dados espectrais sobre HPA e derivados são disponíveis na literatura e em coleções tradicionais de espectros ou em discos a laser. Os modernos aparelhos de CG-EM, por exemplo, são microcomputadorizados e dispõem de diversas técnicas de espectros de compostos químicos (gerais e por classe de substâncias) o que permite uma rápida busca e identificação.

4.3.1. Ultravioleta-Visível

Virtuamente, todas as composições orgânicas que absorvem na região ultravioleta (UV) e/ou visível (VIS) são moléculas insaturadas (ou polissaturadas). A irradiiação de moléculas de HPA com luz UV-VIS, utilizando um comprimento de onda adequado, geralmente resulta em absorção pela promoção de elétrons π a níveis energéticos superiores (π → π*). A fluorescência é também comum à maioria dos HPA exceto para os nitroderivados que emitem fluorescência em níveis muito baixos. Contudo, alguns NHPA emitem fluorescência às altas temperaturas 35,36.

Os limites de detecção relatados para UV é da ordem de microgramas e, portanto, de sensibilidade insuficiente para aplicação em análise de materiais ambientais, geralmente pouco concentrados em HPA. Os métodos que usam a fluorescência são mais específicos e sensíveis que a absorção espectrofotométrica. Deste modo, a fluorimetria é a técnica espectroscópica mais utilizada na quantificação de HPA, principalmente como detector em técnicas cromatográficas tipo CLAE 14,35,36,172. Dados sobre limites de detecção de HPA por espectroscopia de fluorescência são disponíveis na literatura 15,16,172. Estes limites podem chegar a 0,5 ppt (pêreo em solução aquosa) quando utiliza-se um sistema de excitação induzida a laser, disponível em instrumentos modernos 15,16.

4.3.2. Infravermelho e Ressonância Magnética Nuclear

As técnicas espectroscópicas de Infravermelho (IV) e a Ressonância Magnética Nuclear (RMN) estão entre as mais importantes na identificação de moléculas orgânicas. Os aparelhos modernos de IV com transformação de Fourier (TF) e RMN com supercondutores de 300 a 600 MHz de potência e, também, transformação de Fourier, conferem a estes instrumentos analíticos um grande número de recursos e uma variada possibilidade de experimentos fundamentais na determinação estrutural. As duas técnicas associadas constituem o sistema ideal para a caracterização de moléculas orgânicas conhecidas e desconhecidas.

A principal vantagem das técnicas de IV e RMN, comparada com UV, é o grande número de informações contidas nos espectros e a relação direta com a estrutura molecular. Espectros de referência de IV e RMN são disponíveis em coleções tradicionais como a Sadler 16 e, mais recentemente, em sistemas de discos compactos a laser. Devido a baixa sensibilidade, IV e RMN são utilizadas, principalmente, na análise qualitativa.

A caracterização estrutural de HPA por ressonância magnética nuclear é realizada pela análise de dados dos espectros de 1H e 13C. A discriminação entre isómeros pode ser feita com o auxílio de técnicas especiais como desacoplamento (irradiação/ RMN H) e, também, por experimentos em duas dimensões do tipo 1H-13C etc 13,14. A principal desvantagem da técnica de RMN é a quantidade de substância pura, relativamente grande (5-20 mg), que é necessária para se proceder a análise. A RMN é, portanto, das melhores técnicas para a determinação estrutural (alta seletividade), porém, é insuficiente como método quantitativo (baixa sensibilidade).

4.3.3. Espectrometria de massas

A espectrometria de massas é uma técnica equivalente em importância aos métodos de IV e RMN. Do ponto de vista analítico, apresenta a vantagem de ser útil tanto na identificação quanto na quantificação de compostos orgânicos, mesmo em baixa concentrações.

A espectrometria de massas ganhou enorme destaque na análise de compostos orgânicos principalmente após o acoplamento aos sistemas de cromatografia gasosa de alta resolução (CGAR) e cromatografia líquida de alta eficiência (CLAE). Embora a técnica seja geralmente menos sensível que o método de fluorescência, oferece informações importantes para identificação das misturas complexas, e.g., de compostos orgânicos poliaromáticos (COP). Isto é possível pela obtenção de um espectro para cada componente da mistura e, também, pela quantidade e qualidade das informações contidas nos espectros de massas. O desenvolvimento de técnicas inovadoras nos últimos anos, e.g., EM-EM, deu um novo impulso ao método que é, hoje, amplamente utilizado na quantificação e identificação de substâncias orgânicas 17.

Os principais analisadores (separadores de íons) dos sistemas CG-EM são o analisador quadrupolar 72 e a armadilha de íons (ion trap) 72. Os métodos de ionização mais utilizados na análise de HPA são o impacto de elétrons (IE) e a ionização química (IQ). Os HPA e NHPA atmosféricos e de outros tipos de amostras, são rotineiramente analisados usando a EM como sistema de detecção. A técnica de EM-EM tem sido utilizada na identificação de determinados NHPA 129.

O monitoramento de agentes mutagênicos e/ou cancerígenos in vivo (incluindo os metabólitos de HPA e NHPA) tem sido realizado, com o auxílio da CG-EM. A saúde humana conta, portanto, com a participação decisiva da espectrometria de massas tantas são as suas aplicações biológicas 16,65.

4.4. Métodos polargráficos

Moléculas que são facilmente oxidadas ou reduzidas podem ser detectadas através de métodos elektroquímicos. O campo de
aplicação é bastante amplo incluindo o uso industrial e o monitoramento clínico e ambiental através das modernas técnicas fluxo de contínuo (AFC), injeção contínua (AIC) e cromatografia líquida (CL).

As técnicas modernas de voltametria e polarografia têm alta sensibilidade e seletividade sendo uma ótima combinação com os eficientes métodos de separação cromatográfica. No sistema de CLAE, e.g., a detecção eletroquímica é uma boa alternativa principalmente quando os métodos tradicionais como UV e fluorescência não apresentam boa sensibilidade ou seletividade. Os limites de detecção são da ordem de 10 pg injetado, para compostos oxidáveis, e 10 vezes maior (100 pg) para moléculas reductíveis, isto devido a problemas causados pelo oxigênio dissolvido e a estabilidade do elektrodo.

Do modo geral, moléculas de NHPA e OXI-HPA podem ser reduzidas por um elektrodo convencional sólido (e.g., um elektrodo de platina) utilizando potencial negativo (-400 mV a -700 mV vs. Ag/AgCl). A figura 12 mostra as reações que ocorrem na superfície do elektrodo.

A cromatografia líquida de alta eficiência com detecção eletroquímica redutora a tetracloroetano tem sido usada com sucesso na quantificação de NHPA de material particulado atmosférico e de emissão de motores a diesel, com as vantagens de ser um método seletivo e ter uma boa sensibilidade.

4.5. Substâncias e amostras de referência (padrões)

A importância ambiental dos HPA e NHPA determinou a necessidade de se produzir padrões e amostras de referência, em alto grau de confiabilidade, para uso analítico. Soluções padrão e substâncias com grau de pureza maior que 99% são produzidas e comercializadas por empresas como a Aldrich, Chemsyn Science Laboratories e AccuStandard.

Vários materiais de referência são produzidos e certificados por organizações governamentais, e.g., pelo National Institute of Standards and Technology (NIST), dos Estados Unidos da América, que fornece os padrões SRM (Standard Reference Material). Como parte do processo de certificação o material é analisado por duas ou mais técnicas analíticas e os resultados são usados para determinar as concentrações dos analitos.

As amostras de referência (padrões) de HPA são feitas a partir de diversas matrizes ambientais como MPA, emissão de motores a diesel, sedimento, etc. A solução padrão SRM 1647 contém 10 ppm de HPA encontrados na atmosfera, dissolvidos em acetonitrila e o material de referência SRM 1649 é constituído de aerossóis de atmosfera urbana. Estes materiais podem ser usados em diversas metodologias analíticas como instrumento de calibração e controle positivo da técnica. Os NHPA também são constituíntes de materiais de referência do NIST, e.g., SRM 1587 (HPA mononitrados) e SRM 1596 (HPA dinitrados). HPA e NHPA de referência também são fornecidos pela Comissão da Comunidade Europeia através do Community Bureau of Reference (BCR).

Os padrões e materiais de referência devem ser armazenados ao abrigo da luz para evitar a fotodecomposição. Por exemplo, o 9-nitroantraceno (dissolvido em ciclo-hexano ou THF/hexano) decompõe rapidamente quando irradiado com luz UV. Os produtos mais abundantes da decomposição do 9-nitroantraceno, identificados por CG-EM, foram a antiruquina e a fluorenona.

Padrões com alto grau de pureza também podem ser obtidos em laboratório, geralmente combinando as técnicas de cromatografia e recristalização. A técnica de CLAE preparativa ou semi-preparativa, em fase normal ou reversa, é das mais utilizadas. A cromatografia em coluna, utilizando um aparelho de Soxhlet modificado, com alumina ou Florisil como adsorvente e hexano-benzeno (ou tolueno) como eluente, é um excelente sistema para a separação e purificação de HPA de NHPA.

5. CONSIDERAÇÕES FINAIS

O impacto causando pelos HPA e derivados nitrados e oxigenados ao ambiente não está ainda estabelecido. A maior preocupação, contudo, diz respeito à que poderá acontecer no futuro, principalmente como resultado do constante aumeneto das frotas veiculares em todos os países do mundo. É, consequentemente, que ações podem neutralizar os seus efeitos e reparar os danos causados à natureza. Isso depende, entre outros fatores, da eficiência dos catalisadores de automóveis, do uso de combustíveis não derivados de petróleo e da utilização de sistemas de transporte não poluentes.

Atenção especial deve ser dada aos demais processos de emissão de HPA como as fontes industriais (e.g., produção de aluminio e incineração de rejeitos) e domésticas e, também, aos mecanismos específicos de controle anti-polução.

O estudo continuado das fontes, formação, reatividade e quantificação de HPA na atmosfera permitirá, portanto, uma melhor compreensão do papel destes compostos no ambiente viabilizando, deste modo, o desenvolvimento de estratégias de controle e reparação ambiental.

6. LISTA DE ABBREVIATURAS

ANT antraceno
BaA benzo[a]antraceno
BaF benzo[a]fluoranteno
Bap benzo[a]pireno
BbF benzo[b]fluoranteno
Bgp benzo[g,h,i]peribeno
BKF benzo[k]fluoranteno
CAC cromatografia por adsorção em coluna
CCD cromatografia em camada dolgada
CG cromatografia gasosa
CG-EM cromatografia gasosa acoplada à espectrometria de massas
CG-IV cromatografia gasosa acoplada à espectroscopia de infravermelho
CGAR cromatografia gasosa de alta resolução
CHR criseno
CL cromatografia líquida
CL-EM cromatografia líquida acoplada à espectrometria de massas
CL-IV cromatografia líquida acoplada à espectroscopia de infravermelho
CLAE cromatografia líquida de alta eficiência
CLS cromatografia líquido-sólido
CME cromatografia micelar eletrocinética
COP compostos orgânicos poliaromáticos
COR coroneno
COS compostos orgânicos semi-voláteis
COV compostos orgânicos voláteis
d.i. diâmetro interno
dCE detector por captura de elétrons
dEQ detector eletroquímico
dFN detector de fósforo e nitrogênio
dIC detector por ionização em chama
dNA ácido desoxirribonucleico
d.p. diâmetro de partícula
dQL detector por quimioiluminescência
dM espectrometria de massas
eV elétron-volt
FTL fluortaneto
FLU fluoreno
Hi-Vol amostrador de grande volume
HPA hidrocarbonetos policíclicos aromáticos
IE impacto de elétrons
IND indeno[1,2,3-c,d]pireno
IQ ionização química
IV infravermelho
IV-TF infravermelho com transformação de Fourier
MHz megahertz
MOP material orgânico policíclico
MP material particulado
MPA material particulado atmosférico
NAF naftaleno
NIST National Institute of Standards and Technology
NF nitrofluorantoneto
NHPPA nitro-hidrocarbonetos policíclicos aromáticos
NP nitropireno
OXI-HPA HPA oxigenados
PAN nitrato de peroxiacetila
PHE fenantreno
PTS partículas totais em suspensão
PYR pirenó
RMN ressonância magnética nuclear
SRM standard reference material
THF tetraidrofurano
UV ultravioleta
UV-VIS ultravioleta-visorável

AGRADECIMENTOS

Ao Prof. Pedro Afonso de Paula Pereira (IQ-UFBa) pelas valiosas sugestões ao manuscrito e pelo trabalho de revisão, à Profa. Dra. Lilian R.F. Carvalho por tornar disponível a ref. 138 antes de sua publicação e ao CNPq, FINEP, PADCT e CAPES pelo suporte financeiro.

REFERÊNCIAS

33. Waller, R. E.; Br. J. Cancer 1952, 6, 8.