FOTOFÍSICA DE CAROTENÓIDES E O PAPEL ANTIOXIDANTE DE β-CAROTENO

Sergio Luis Cardoso
Instituto de Química - Universidade Federal do Rio de Janeiro - CT - Bloco A - 21949-900 - Rio de Janeiro - RJ

 Recebido em 18/4/96; aceito em 16/12/96

PHOTOPHYSICS OF CAROTENOIDS AND THE ANTIOXIDANT ROLE OF β-CAROTENE.
Carotenoid polyenes play a wide role in nature and their photophysical properties make of these pigments a focus of research in photochemistry, photobiology and photomedicine. Some aspects of the singlet and triplet states and, their interaction with molecular and singlet oxygen and free radicals are briefly reviewed in this article.

Keywords: carotenoids; β-carotene; singlet oxygen.

INTRODUÇÃO

De todos os pigmentos naturais, os carotenóides são provavelmente os de maior ocorrência, podendo ser encontrados em animais, plantas e microorganismos. São pigmentos altamente coloridos, insaturados e lipofílicos, apresentando uma variedade de cores desde o amarelo até o vermelho. Os carotenóides são responsáveis pela coloração apresentada por muitos insetos, pássaros, peixes e crustáceos. Por exemplo, são responsáveis pelas cores do salmão, da truta e do peixe dourado, pela plumagem rosa dos flamingos e, pela mudança de cor da lagosta, quando submetida ao aquecimento, em função da liberação de um carotenóide, astaxantina (I), que está inicialmente associado à uma proteína.

Quase todos os carotenóides são derivados de tetraterpenos (C40) com o esqueleto hidrocarbonênico consistindo em oito unidades isoprenênicas. Na natureza, os carotenóides surgem a partir da reação de acoplamento "cauda-cauda" do análogo C20 do pirosfosfato de farnesila, levando inicialmente à formação do fitóeno (Figura 1); este por sua vez, através de reações de desidrogenação, ciclagem e oxidação, dará origem a uma variedade de pigmentos C40, como por exemplo, os abundantes β-caroteno (II) e licopeno (III). Esta classe de pigmentos também inclui certos compostos formados pelo rearranjo deste esqueleto, ou pela remoção formal de parte desta estrutura. Carotenóides formados somente por átomos de carbono e hidrogênio são chamados de carotenos, enquanto os derivados contendo um heteródonitro, como por exemplo oxigênio, são chamados de xantofilas.

O carotenóide mais conhecido é o β-caroteno, pigmento responsável pela cor característica da cenoura que corresponde à pró-vitamina A mais abundante e de maior atividade, sendo convertido em vitamina A pela quebra oxidativa da dupla ligação central e posterior redução bioquímica do aldeído (Figura 2).

E-Mail: cardoso@iq.ufrj.br

Figura 1. Formação de carotenóides na natureza. Acoplamento "cauda-cauda" do análogo C-20 do pirosfosfato de farnesila dando origem ao fitóeno.

Figura 2. Quebra oxidativa de β-caroteno dando origem à Vitamina A.

Os carotenóides destacam-se em outras áreas da medicina além da nutricional, sendo utilizados no tratamento de certas doenças de pele, como por exemplo na fotoporfiria eritropoiética. Estudos recentes indicam uma possível atividade anticancerígena como também a provável participação como moduladores das respostas imunológicas. Na área comercial os carotenóides já há alguns anos vêm sendo utilizados como colorantes e agentes antioxidantes, principalmente em alimentos.
além de altamente coloridos, são de ocorrência natural e não tóxicos. Além disso, os carotenoides não são particularmente caros, bastando por exemplo, 3-5 g de β-caroteno para conferir a uma tonelada de margarina a sua cor amarela característica. As propriedades antioxidantes dos carotenoides e a análise dos produtos de autooxidação de β-caroteno foram recentemente revistas por Krinsky et al.\(^5,6\). O mecanismo exato de ação dos carotenoides como antioxidantes in vivo ainda não está determinado, porém acredita-se que esteja relacionado a sua capacidade de interagir eficientemente com íons radicais e com espécies reativas do oxigênio.

A presença abundante de carotenoides em membranas fotossintéticas há muito sugeriu o desempenho de algum papel nas reações e/ou estabilização destes sistemas. Atualmente está bem estabelecido que os carotenoides desempenham duas importantes funções em fotossíntese. Primeiramente, eles atuam como antenas auxiliares, absorvendo luz em regiões do espectro visível onde a clorofila não absorve eficientemente. Os carotenoides transferem com eficiência a energia absorvida para outros pigmentos que então a direcionam ao centro de reação. O mecanismo deste processo envolve a transferência de energia singlete-singlete do carotenóide para a clorofila ou bacterioclorofila. Além de funcionarem como antenas, os carotenoides também atuam como fotoproteores do sistema fotossintético. O mecanismo de fotoproteção envolve a supressão dos estados triplete da clorofila, evitando a formação de oxigênio singlete \((^1O_2)\) via sensibilização, ou seja, transferência de energia triplete da clorofila para o carotenóide; se houver formação de oxigênio singlete por outros processos, o mesmo pode ser diretamente suprimido pelo carotenóide\(^10,13\).

Alguns trabalhos sugerem também a participação de carotenoides na regulagem do fotossistema II, envolvendo a conversão de violaxantina em zeaxantina (Figura 3) como um dos fatores responsáveis pela dissipação do excesso de energia de excitação através de processos não radiativos; esta conversão poderia não só ter uma função estrutural como também envolver a supressão direta do estado excitado singlete da clorofila pela zeaxantina\(^14,18\).

![Figura 4. Processos primários da visão. Fotoisomerização do retinal.](image)

O espectro do estado fundamental dos carotenoides é caracterizado por forte absorção na região do visível, \(400-500\) nm, devido à transição dipolo permitida \(S_0(1^1B_2)\rightarrow S_0(1^1A_2)\), apresentando coeficientes de absorção molar da ordem de \(1,5 \times 10^5\) dm\(^3\) mol\(^{-1}\) cm\(^{-1}\) como por exemplo, para β-caroteno em 460 nm em benzeno. O cromóforo responsável por esta absorção é a cadeia carbônica de ligações duplas conjugadas. O espectro de absorção apresenta tipicamente estrutura fina vibracional devido às transições (0-0), (1-0), e (2-0). Com o aumento do número de ligações duplas conjugadas do carotenóide \((n)\), observa-se aumento dos valores do coeficiente de absorção molar e deslocamento batométrico do \(\lambda_{\text{max}}\). No caso dos isômeros cis, observa-se valores menores dos coeficientes de absorção molar e uma banda extra na região do UV conhecida como banda "cis".

Estudos teóricos e experimentais com polímeros simples e com alguns carotenoides levaram a um melhor entendimento do comportamento eletrônico desta classe de pigmentos. Estudos de espectroscopia eletrônica destas moléculas estabeleceram a existência de um estado excitado \(S_2(2^1A_2')\) entre o estado eletrônico fundamental \(S_0(1^1A_2)\) e o estado excitado permitido \(S_0(1^1B_2)\) para polímeros possuindo de quatro a oito ligações duplas conjugadas (a transição \(S_1(2^1A_2')\rightarrow S_0(1^1A_2)\) é duplamente proibida por paridade e simetria). A localização e caracterização do estado \(S_2(2^1A_2')\) foi feita com espectroscópios convencionais tornando-se mais difícil com o aumento do comprimento da cadeia conjugada.

Os carotenoides são fracamente fluorescentes com rastreios quânticos por volta de \(10^{-4}\). Normalmente, carotenoides com menos de sete ligações duplas conjugadas emitem do estado \(S_0(1^1A_2)\), populado a partir do relaxamento não radiativo do estado \(S_0(1^1B_2)\). No caso de carotenoides com 7 ou 8 ligações duplas conjugadas ocorre a inversão da emissão \((\text{SI}\rightarrow\text{S0})\) com deslocamento de Stokes, característica de polímeros, passando a apresentar comportamento "anti-Kasha", com emissão \((\text{S2}\rightarrow\text{S0})\). Esta inversão é atribuída ao aumento da diferença de energia entre os estados \(S_2-S_1\) com o aumento da cadeia conjugada, diminuindo a taxa do processo de conversão interna do estado \(S_1(2^1A_2')\rightarrow S_0(1^1B_2)\) conforme previsto pela lei da diferença de energia\(^22,24\). Desta forma, carotenoides com mais de sete ligações duplas conjugadas passam a apresentar emissão do estado \(S_0(1^1B_2)\) conforme previsto pela lei da diferença de energia\(^22,24\). No estado particular de retinal e seus derivados carbonilados, além da transição permitida para o estado \(\pi,\pi^*\), esiste duas transições proibidas, uma para o estado \(\pi,\pi^*\) e outra para o estado \(\pi,\pi^*\).

A posição relativa destes três níveis de energia é fundamental na definição dos processos de fluorescência, isomerização e cruzamento interssistemicos destes compostos. No caso das moléculas com cadeia conjugada curta \((n=2-4)\), não é observada fluorescência em função do estado \(\pi^*\) ser o de menor energia; para os derivados intermediários \((n=5,6)\) a ordem dos estados excitados e, consequentemente a fluorescência, é dependente de fatores externos como solvante e temperatura; os derivados de cadeia conjugada longa \((n=7,8)\) apresentam...

Figura 3. Conversão da zeaxantina (11 ligações duplas conjugadas) em violaxantina (9 ligações duplas conjugadas).

Nos processos primários da visão, encontramos outra importante função dos carotenoides na natureza. Nos pigmentos visuais, como a rodopsina, o retinal encontra-se na forma isomérica 11-cis, 12-s-trans e está ligado a uma proteína, a opsina. O início dos estágios primários dos processos visuais é atribuído a uma mudança conformacional causada na proteína pela fotoisomerização do retinal (Figura 4)\(^19\).

O ESTADO SINGLETE DE CAROTENOÍDES

Os carotenoides simétricos pertencem ao grupo pontual C\(_{2v}\) e a descrição completa dos estados eletrônicos de um carotenóide é dada por: \(S_0(1^1A_2), S_1(2^1A_2)\) e \(S_2(1^1B_2)\), onde o superíndice 1 refere-se ao estado singlete.

536 QUÍMICA NOVA, 20(5) (1997)
emissão independente do solvente e temperatura, pois o estado \(\pi^* \rightarrow \text{S}_1(2A_2g) \) passa a ser o de menor energia.\(^{31}\)

Devido à rápida velocidade de desativação do estado \(S_2 \) (na faixa de femtosegundos), existe somente um pequeno número de medidas resolvidas no tempo onde foi determinado diretamente o tempo de vida deste estado. Através de experimentos de absorção de transientes o tempo de vida do estado \(S_2 \) para o \(\beta \)-caroteno em etanol e \(\text{CS}_2 \) foi estabelecido em 200 e 250 fs, respectivamente.\(^{29}\)
Com experimentos utilizando a técnica de fluorescência de alta-conversão este tempo de vida foi estimado em 195 ± 10 femtosegundos\(^{32}\). O tempo de vida do estado \(S_1 \) para o \(\beta \)-caroteno foi estimado em aproximadamente 8 ps\(^{33}\).

O ESTADO TRIPLETE DE CAROTENOÍDEIS

Uma das principais dificuldades para o estudo e caracterização do estado triplete de carotenóides encontra-se no fato de que este estado não pode ser popularizado diretamente, isto é, o rendimento quântico de cruzamento intersistemas neste tipo de molécula é praticamente nulo, sendo estimado em aproximadamente 0,001\(^{35}\). Uma exceção a esta regra geral é feita no caso particular de alguns carotenóides de pequena cadeia conjugada como \(\beta \)-ionona, retinal e \(\beta \)-apo-14'-carotenal, onde a formação do estado triplete por excitação direta pode ser observada, sendo tal fato atribuído à existência de um estado \(\pi \pi^* \) próximo ou abaixo do estado singlete de mais baixa energia \(\pi \pi^* \) para \(\beta \)-ionona e retinal e, a um estado \(\pi \pi^* \) abaixo do estado singlete de natureza \(\pi \pi^* \) no caso de \(\beta \)-apo-14'-carotenal\(^{34}\).

Tipicamente o estado triplete de um carotenóide pode ser popularizado via processos de transferência de energia utilizando-se um sensibilizador apropriado. Este sintente pode ser observado através de técnicas como fotodisse de pulso e radiodisse de pulso, apresentando esta última a vantagem de poder ser usada para excitar diretamente o estado triplete através de um mecanismo de recombinação de ions e, portanto não envolvendo o processo de cruzamento intersistemas\(^{37}\). Em geral, as mesmas tendências observadas acima para os espectros de absorção do estado fundamental podem ser extendidas para os espectros de absorção do estado triplete, isto é, aumento do coeficiente de absorção molar e deslocamento para o vermelho do \(\lambda_{\text{max}} \) em função do aumento do número de ligações duplas conjugadas do carotenóide\(^{37,38}\).

Devido fato de carotenóides serem não fosforescentes, os métodos mais empregados para a determinação da energia deste estado têm sido: transferência de energia\(^{36,43}\) acoplamento spin-órbita\(^{44}\) e, recentemente espectroscopia de fotoacústica pulsada, utilizando também sensibilizadores para gerar o estado triplete dos carotenóides\(^{35}\). A determinação da energia do estado triplete de carotenóides continuam sendo o alvo de muitos trabalhos, gerando também muitas controvérsias em relação aos valores encontrados. Como exemplo, existem diferentes estimativas para o valor da energia do estado triplete do \(\beta \)-caroteno, os valores relatados são: entre 1,24 e 0,97 eV estimado através de radiodisse de pulso e supressão por oxigênio molecular\(^{37}\); entre 1,08 e 0,90 eV utilizando-se sensibilizadores de diversas energias de triplete\(^{39,40}\) e 0,64 ± 0,04 eV através de calorimetria fotoacústica resolvida no tempo\(^{46}\). Gorman et al\(^{47}\) utilizando dados termodinâmicos obtidos através de experimentos com variação de temperatura, obtiveram o valor de 1,0 eV para a energia espectroscópica (ou vertical) do estado triplete de \(\beta \)-caroteno, enquanto Redmond e Lambert, utilizando calorimetria de fotoacústica pulsada e \(\text{C}_60 \) e \(\text{C}_70 \) como sensibilizadores obtiveram o valor de 0,84 ± 0,04 eV para a energia do estado triplete relaxado\(^{45}\). Para \(\beta \)-ionona foi demonstrado que o estado triplete espectroscópico (ou vertical) sofre relaxamento extremamente rápido para um estado triplete torcido onde acredita-se que a dupla ligação central esteja a 90° em relação a sua configuração inicial, nesta caso a energia do estado triplete relaxado encontra-se 0,67 eV abaixo da energia do estado triplete vertical inicialmente formado\(^{48}\).

O estado triplete de mais baixa energia dos carotenóides apresenta tipicamente tempos de vida na faixa de \(10 \pm 5 \) ps\(^{33,36}\). Para carotenóides de \(7 \) a \(11 \) ligações duplas conjugadas foram observados tempos de vida do estado triplete na faixa de \(3 \) a \(11 \) μs em tolueno, com a diminuição do tempo de vida em função do número de ligações duplas da cadeia conjugada do carotenóide. Este fato é atribuído à diminuição da energia do estado triplete em função do aumento da cadeia conjugada e consequente aumento da eficiência dos processos de decaimento não radiativos para a desativação do estado triplete\(^{17}\).

Interessantemente, os carotenóides de cadeia conjugada curta (n<4) apresentam tempos de vida do triplete relaxado na faixa de 150 ns, bem abaixo dos valores observados para os outros carotenóides. Becker et al\(^{49}\) atribuíram esta diferença a um possível estado triplete de caráter misto \(\pi \pi^* - \pi \pi^* \) para carotenóides com n<4 enquanto que para os polímeros de cadeia mais longa o estado triplete seria de caráter puramente \(\pi \pi^* \).

SENSIBILIZAÇÃO E SUPRESSÃO DE OXIGÊNIO SINGLETE POR CAROTENOÍDEIS

Normalmente os carotenóides são conhecidos por sua capacidade de supressão de espécies reativas de oxigênio e de radicais livres, mas, também são capazes de gerar espécies reativas, como por exemplo, oxigênio singlete. A capacidade de sensibilização de oxigênio singlete nesta diretamente relaciona- da a dois fatores principais, primeiro é necessário que haja a formação do estado triplete do carotenóide e, segundo que o processo de transferência de energia do estado triplete do carotenóide para o oxigênio molecular seja termodinamicamente permitido, isto é, a energia do estado triplete do carotenóide deverá ser igual ou superior à energia do oxigênio singlete (0,98 eV); estes dois fatores, por sua vez, estão relacionados ao comprimento da cadeia conjugada do carotenóide\(^{49}\). No caso de retinal e \(\beta \)-apo-14'-carotenal, observa-se a sensibilização de oxigênio singlete pela excitação direta destes pigmentos, isto é, o estado triplete é formado e o processo de transferência de energia é termodinamicamente permitido. Recentemente, o estado de uma série de carotenóides covalentemente ligados a um sensibilizador demonstrou que carotenóides possuindo até oito ligações duplas conjugadas sensibilizam a formação de oxigênio singlete e que a partir de níveis de ligações duplas conjugadas o processo não ocorre. Para o caso específico do carotenóide com oito ligações duplas conjugadas observou-se que o mesmo é capaz de sensibilizar e também suprimir oxigênio singlete, indicando que o estado triplete deste carotenóide deve ser isoeenergético ao oxigênio singlete\(^{17}\).

A capacidade de supressão de oxigênio singlete pelos carotenóides ocorre via um mecanismo de transferência de energia envolvendo a excitação do carotenóide ao estado triplete de mais baixa energia (1), sendo este, por sua vez, desativado pelo eficiente decaimento não radiativo para o estado fundamental\(^{(2)}\)\(^{37,50,53}\).

\[
\text{O}_2(1\Delta_g) + \text{Car} \rightarrow \text{O}_2(1\Sigma_g^+) + \text{Car}^*
\]

(1)

\[
\text{3Car}^* \rightarrow \text{Car} + \text{calor}
\]

(2)

Para \(\beta \)-caroteno, este processo de transferência de energia é bastante eficiente, apresentando uma constante de supressão \((k_s)\) da segunda ordem de aproximadamente \(1,4 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}\) em diversos solventes\(^{46,53}\). A tabela 1 apresenta valores de \(k_s \) para alguns carotenóides. A capacidade de supressão de oxigênio singlete por vários carotenóides pode ser comparada através dos valores de suas constantes de supressão e, como pode ser observado na tabela 1, dentre os carotenóides com 11 liga-
Tabela 1. Valores da constante de supressão de oxigênio singlete \((k_s)\) para alguns carotenóides.

<table>
<thead>
<tr>
<th>Carotenóide</th>
<th>((n))</th>
<th>(k_s) ((M^{-1} s^{-1})) (solvente)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violaxantina</td>
<td>9</td>
<td>1,6 x 10^{-10} (Tolueno)</td>
<td>44</td>
</tr>
<tr>
<td>Bixina</td>
<td>9</td>
<td>1,4 x 10^{-10} (EtOH:CHCl_3:H_2O) (50:50:1)</td>
<td>53</td>
</tr>
<tr>
<td>Luteína</td>
<td>10</td>
<td>0,8 x 10^{-10} (EtOH:CHCl_3:H_2O) (50:50:1)</td>
<td>53</td>
</tr>
<tr>
<td>Trans-β-carotenó</td>
<td>11</td>
<td>1,4 x 10^{-10} (EtOH:CHCl_3:H_2O) (50:50:1)</td>
<td>53</td>
</tr>
<tr>
<td>Licopeno</td>
<td>11</td>
<td>3,1 x 10^{-10} (EtOH:CHCl_3:H_2O) (50:50:1)</td>
<td>53</td>
</tr>
<tr>
<td>Cantaxantina</td>
<td>11</td>
<td>1,3 x 10^{-10} (Tolueno)</td>
<td>44</td>
</tr>
<tr>
<td>Astaxantina</td>
<td>11</td>
<td>1,4 x 10^{-10} (Tolueno)</td>
<td>51</td>
</tr>
<tr>
<td>Zeaxantina</td>
<td>11</td>
<td>2,8 x 10^{-10} (Benzeno)</td>
<td>44</td>
</tr>
<tr>
<td>Decapreno-β-carotenó</td>
<td>15</td>
<td>2,1 x 10^{-10} (Benzeno)</td>
<td>44</td>
</tr>
<tr>
<td>Dodecapreno-β-carotenó</td>
<td>19</td>
<td>2,9 x 10^{-10} (Benzeno)</td>
<td>44</td>
</tr>
</tbody>
</table>

\((n)\) = número de ligações duplas conjugadas do carotenóide.

ações duplas conjugadas, o licopeno é o que apresenta maior capacidade de supressão. Os carotenóides com cadeia conjugada mais longa, como decapreno-β-carotenó e dodecapreno-β-carotenó são os mais eficientes na desativação de \(O_2(1\Delta_g)\), com valores das constantes de supressão aproximando-se do limite para os processos controlados por difusão de 3 \(x 10^{-10} M^{-1} s^{-1}\) em benzeno\(^{54}\).

SUPRESSÃO DE RADICAIS LIVRES POR CAROTENOÍDES

Além da supressão de oxigênio singlete, os carotenóides possuem a capacidade de reagir com radicais livres, principalmente com oxi-radicais como, o superoxído \((O_2^\cdot)\), o radical hidperoxila \((HO_2^\cdot)\) e o radical hidroxila \((HO^\cdot)\). Deve-se ressaltar que o superoxído não é muito reativo quando comparado com, por exemplo, o radical hidroxila. *In vivo* estes radicais podem ser formados tanto em decorrência de processos naturais, como por exemplo \(O_2^\cdot\) produzido através de fagocitose, ou em decorrência de influências externas, como por exemplo radiação UV. A dismutação do superoxído leva a formação de peróxido de hidrogênio \((3)\) que, em presença de metais de transição, leva a formação do radical hidroxila \((4)\), uma espécie altamente oxidante, capaz de reagir com quase todas as moléculas dos organismos, com constantes de velocidade da ordem de \(10^8 10^9 M^{-1} s^{-1}\):

\[
O_2^\cdot + O_2^\cdot + 2H^+ \rightarrow H_2O_2 + O_2
\]

\((3)\)

\[
H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + HO^\cdot + HO^\cdot
\]

\((4)\)

In vivo, muitas das reações radiculares potencialmente prejudiciais são evitadas ou modificadas pela ação de agentes inibidores ou antioxidantes. Por exemplo, no caso do \(O_2^\cdot\), a superoxído dismutase (SOD) age como agente de defesa contra esta espécie ou seus efeitos, enquanto as enzimas catalase e peroxidase atuam sobre \(H_2O_2\). A capacidade de proteção dos carotenóides é atribuída à habilidade destes pigmentos de agirem como antioxidantes\(^{50}\). Os agentes antioxidantes atuam na prevenção da peroxidização lipídica e são classificados em duas categorias: antioxidantes de quebra de cadeia, que interferem na etapa de propagação radical (como fenôis e ácidos aromáticos) e, os antioxidantes preventivos, que interferem na etapa de iniciação do processo radical (como algumas enzimas inclusive a peroxidase e a catalase). Os experimentos *in vitro* de Burton e Ingold\(^{55}\) mostraram que o β-carotenó pertence a uma classe de antioxidantes biológicos cujo mecanismo de ação difere das classes de antioxidantes convencionais acima citadas uma vez que este pigmento não é um antioxidante preventivo da decomposição de peróxidos nem um antioxidante convencional de quebra de cadeia apesar de reagir rapidamente com radicais \(Cl_2\) e COO\(^{-}\). Especificamente, o β-carotenó exibe uma boa capacidade de captura de radicais somente a pressões parciais de oxigênio significativamente abaixo de 150 torr, ou seja, a pressão normal de oxigênio no ar, comumente encontrada na maior parte dos tecidos sob condições fisiológicas. Em altas pressões de oxigênio, o β-carotenó perde sua atividade antioxidante e apresenta um efeito pró-oxidante autocatalítico. Estas observações levaram a proposta de um mecanismo de ação antioxidante de β-carotenó similar ao proposto para o trifenilmetano. A adição de um radical ROO\(^{-}\)(e, possivelmente, também de um radical R\(^{+}\)) ao sistema conjugado de β-carotenó leva a formação de um radical inibidor, carbonocentrado e estabilizado por ressonância \((5)\), que reage rapidamente com oxigênio, produzindo um radical peroxila carreador de cadeia \((6)\). Desta forma, a habilidade de β-carotenó atuar como antioxidante reside na etapa reversível (reação \(6\)). As altas pressões de oxigênio o equilíbrio está deslocado para a direita mas, a pressões parciais suficientemente baixas (< 150 torr), o equilíbrio desloca-se para a esquerda, abaindo efetivamente a concentração de radicais peroxila, reduzindo assim a quantidade de auto-oxidação no sistema. São os efeitos combinados da reatividade de β-carotenó com radicais peroxila e, a estabilidade do radical carbono-centralizado \(βCar\) que conferem ao β-carotenó sua capacidade antioxidante. A estabilidade dos radicais \(βCar\) é tal que, a baixas pressões parciais de oxigênio ele predomina sobre os radicais \(βCar-OO\)\(^{-}\) e \(βCar\) e é removido pela reação com um radical peroxila \((7)\). Esta última etapa é mais rápida que a reação de auto-terminação peroxila-peroxila. As observações acima podem ser extendidas para outros carotenóides, e também retinóides, uma vez que nestes casos a atividade antioxidante depende principalmente da formação de um radical carbono-centrado estabilizado por ressonância. Deve-se ressaltar que até o momento, os radicais \(βCar-OO\)\(^{-}\) e \(βCar\) não foram observados diretamente, sendo sua existência proposta para explicar os resultados experimentais encontrados\(^{44,55}\).
(lipoproteína de baixa densidade), que é responsável pelo transporte de colesterol in vivo e, o áion peroxinitrito, um poderoso oxidante e agente de nitratação, formado pela reação entre o NO e o superoxído, está relacionado ao processo de oxidação da LDL que leva à formação de placas aterogênicas56.

As reações dos radicais NO2•, RS• e RSO2• com β-carotenóides foram estudadas utilizando-se a técnica de radiolise de pulso combinada à detecção ótica e condutimétrica33,57,58. Sabe-se que a fumaça de cigarro contém oxídeos de nitrogênio em abundância, incluindo o radical NO2• que interage com os antioxidantes da fase lipídica, particularmente com β-carotenóide. Neste caso, foi demonstrado que o radical NO2• reage com β-carotenóide exclusivamente via transferência de elétron para gerar o cátion radical β-carotenóide+ (λmax = 910 nm). Apesar do radical RS• ser um oxidante mais forte que o radical NO2•, este não reage com β-carotenóide via abstração de elétron e sim via um processo em duas etapas, sendo a primeira etapa rápida, via adição radical formando o aduto-radical [RS•·β-carotenóide] que por sua vez decai lentamente formando produtos com cinética de segunda ordem. No caso do radical RSO2•, um bom oxidante e um potencial iniciador do processo de peroxidização lipídica, foi demonstrado que o mesmo reage com β-carotenóide tanto via abstração de elétron como via adição radical58.

CONCLUSÕES

Apesar da existência de muitos trabalhos envolvendo o estudo de carotenóides nas mais diversas áreas de interesse científico, estes pigmentos continuam atraindo a atenção de muitos pesquisadores em todo o mundo. A possível atuação de carotenóides no tratamento quimiopreventivo do câncer assim como, seus papéis já estabelecidos na medicina, fotossíntese e visão, justificam o interesse pelos processos fotofísicos e fotoquímicos desta classe de pigmentos. A elucidação completa do mecanismo de ação dos carotenóides como antioxidantes ainda é um desafio a ser vencido. A determinação exata da energia do estado triplete bem como da localização dos estados singlete destes pigmentos são de grande importância no que diz respeito a participação destes pigmentos nos processos fotossintéticos naturais e para o futuro desenvolvimento de processos artificiais utilizando estes pigmentos.

AGRADECIMENTOS

Ao CNPq e a Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) pelo apoio financeiro através da concessão de bolsas de Doutorado Sanduíche na Arizona State University e de Pesquisador Visitante no Instituto de Química da Universidade Federal do Rio de Janeiro, respectivamente.

REFERÊNCIAS

33. Besansson, R. V.; Land, E. J.; Truscott, T. G.; Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine; Pergamon Press, 1983; p. 81.