DECOMPOSIÇÃO CATALÍTICA DE ÓLEO DE SOJA EM PRESENÇA DE DIFERENTES ZEÓLITAS

Frances R. Santos e José Carlos Netto Ferreira
Departamento de Química - Instituto de Ciências Exatas - Universidade Federal Rural do Rio de Janeiro - Antiga Rodovia Rio-São Paulo - Km 47 - 23.851-970 - Seropédica - RJ
Stella R. Reis da Costa
Departamento de Tecnologia Química - Instituto de Tecnologia - Universidade Federal Rural do Rio de Janeiro - Antiga Rodovia Rio-São Paulo - Km 47 - 23.851-970 - Seropédica - RJ

Recebido em 18/4/97; aceito em 20/2/98

CATALYTIC DECOMPOSITION OF SOYBEAN OIL IN THE PRESENCE OF DIFFERENT ZEOLITES. The catalytic decomposition of soybean oil was studied in a fixed bed reactor at 673 and 773 K and using amorphous silica-alumina and the zeolites USY, H-Mordenite and H-ZSM-5 as catalysts. Both the selectivity and the catalytic activity were determined by studying the product composition resulting from the chemical reactions. Physicochemical characteristics of the catalysts were obtained by X-ray fluorescence, Fourier Transform infrared spectroscopy, 29Si and 27Al Nuclear Magnetic Ressonance and textural analysis. The zeolites USY and H-ZSM-5, showing higher Brönsted acidity, yielded products with higher concentration in aromatic hydrocarbons, whereas with both H-Mordenite and amorphous silica-alumina the main products were paraffins.

Keywords: soybean oil; zeolites; amorphous silica-alumina.

INTRODUÇÃO

Os óleos vegetais podem ser transformados em misturas de hidrocarbonetos utilizando-se diversos catalisadores, e há vários estudos tentando explorar óleos vegetais como matéria-prima para combustíveis.1,2 O craqueamento térmico ou catalítico destes óleos decompõe inicialmente os ácidos graxos em hidrocarbonetos e o subsiguiente craqueamento destes hidrocarbonetos é, até certo grau, similar ao do petróleo.1

Estudos sobre a decomposição de óleos vegetais tais como óleo de milho, amendoim, rícino e jojoba sobre a H-ZSM-5, a temperaturas de 673-773 K, e sob pressão atmosférica, resultaram na obtenção de misturas de hidrocarbonetos parafínicos, olefinicos e aromáticos com pontos de ebulição menor do que 443 K.3 Nestes casos, foi alcançado alto grau de conversão de compostos aromáticos BTX (benzeno, tolueno e xileno). A mistura produzida era similar à produzida na conversão seletiva do metanol em unidades de hidrocarbonetos e constitui uma gasolina de alta qualidade com elevada octanagem.

Também foi relatada a decomposição catalítica do óleo de canola usando H-ZSM-5, utilizando um microrreator de leito fixo a temperatura de 613 a 673 K, tendo sido observado que, a uma conversão de 70-80%, o óleo de canola era convertido a um produto líquido, formado por hidrocarbonetos e contendo 70-80% em peso de aromáticos, e a um produto gasoso, essencialmente parafínicos.3

Neste trabalho, são mostrados resultados relativos à decomposição catalítica do óleo de soja, utilizando catalisadores com diferentes estruturas zeóliticas, relacionando-se a selectividade e a estabilidade catalítica com as características físico-químicas destes catalisadores.

PARTE EXPERIMENTAL

Métodos Gerais

Fluorescência de raios-X (FRX) foi realizada em espectrômetro de raios-X PHILLIPS - PW 1407, com tubo gerador de Cr e detector proporcional de fluxo, controlado por um microprocessador que fornece ao fim da análise a porcentagem em peso dos óxidos de sódio, alumínio e silício, bem como a razão silício-alumina (SAR).

A cristalinaude das amostras foi determinada em difratômetro PHILLIPS com gerador PW 1729 e controlador PW 1710, com detetor proporcional com monocrômador de grafite, radiação CuKα (λ=1,5418 Å) gerada a 40 kV e 40 mA, fenda divergente e anti-espalhamento de 1º e fenda receptora de 2 mm. O difratograma foi obtido entre 9º e 36º (2θ), com tempo de amostragem de 0,5 segundo.

Para a análise textural, visando a avaliação da área específica, volume microporoso e distribuição dos diâmetros dos poros para os catalisadores, foi empregado um equipamento ASAP (Accelerated Surface Area and Pososimetry) modelo 2400 da Micrometrics.

A caracterização dos sólidos ácidos dos catalisadores na região do infravermelho foi realizada em um espectrofotômetro NICOLET 60 SXR, com transformada de Fourier, utilizando-se piridina como molécula sonda. As amostras, em forma de pastilhas, foram tratadas com 4,0 Torr de piridina, a qual se aerose em sólidos ácidos de Brönsted apresentando banda característica em torno de 1550 cm⁻¹, enquanto que a adsorção em sólidos de Lewis forma uma banda na região de 1450 cm⁻¹. A análise dos produtos da reação de decomposição catalítica foi efetuada em espectrofotômetro Perkin-Elmer 1600, também equipado com transformada de Fourier, com as amostras sendo analisadas em forma de filme líquido, utilizando-se cristais de NaCl.

Dados de ressonância magnética nuclear de 29Si e 27Al foram obtidos em um espectrômetro VARIAN VXR-300, com roter de óxido de zircônio operado sob um campo magnético de 7,05 T, enquanto que dados de RMN 1H foram obtidos em equipamento Bruker AC-200, utilizando CDCl₃ como solvente e tetrametilsilano como referência interna.

Cromatografia em fase gasosa-espectrometria de massas foi realizada em cromatógrafo Hewlett-Packard 5890 (coluna HP-1 de 12 metros), acoplado a um espectrômetro de massas Hewlett-Packard 5989-A à temperatura programada de 303 a 473 K.
Para as reações de decomposição catalítica foram utilizadas as zeólitos USY, obtidas de acordo com os procedimentos descritos na ref. 7, e as amostras comerciais de H-Mordenita e H-ZSM-5. A amostra de Na-SiO2/Al2O3 amorfa (FCC S.A) foi trocada com solução de (NH4)2SiO3 (10% p/p), a 340 K, e então calcinada a 773 K durante 3 horas, obteendo-se assim a H-SiO2/Al2O3 (H-SAA).

A caracterização destes catalisadores está apresentada na tabela 1.

A análise por RMN 29Si complementa a análise química global, uma vez que determina a razão Si/Al da rede cristalina. Assim, pode-se identificar os átomos de Al indiretamente, já que eles afetam os átomos de Si que estão na rede. Por outro lado, a fluorescência de raio-X inclui todos os Al presentes, isto é, os da rede cristalina, os alúminios extra-rede ou ainda aqueles presentes como impurezas no sistema. Para a silica-alumina amorfa o espectro de RMN 29Si mostrou um único pico largo na região típica de Si(0AI), característica dos materiais amorfo, não tendo sido possível então a obtenção do valor de SAR da rede para este sólido.

As características texturais dos catalisadores foram obtidas a partir de medidas das isotermas de adsorção e dessorção de nitrogênio, fornecendo informações acerca das áreas superficiais e internas, bem como da porosidade das amostras. Por não se tratar de material cristalino, não foi possível a obtenção de dados relacionados à porosidade e, consequentemente, à área externa da silice-alumina amorfa.

**Teste catalítico**

Os testes catalíticos foram realizados com uma amostra de óleo de soja comercial, de composição química e propriedades físicas conhecidas.

Todos os experimentos foram conduzidos em um reator tubular de leito fixo, aquecido por um forno elétrico com a temperatura monitorada por um termopar na região do leito catalítico. Os catalisadores, em cada experimento, foram purificados com nitrogênio a 673 K por cerca de 30 min. Então, cerca de 1,0 g de óleo era injetado no topo do reator, durante 1 minuto, passando por 1,5 g de catalisador sob fluxo de nitrogênio. Durante a reação os produtos líquidos eram coletados em um condensador, mergulhado em um banho de resfriamento, localizado abaixo do reator. Ao final de cada corrida, o reator era purificado com nitrogênio durante 15 minutos.

Os produtos líquidos foram analisados por infravermelho com transformada de Fourier (FTIR), ressonância magnética nuclear de 1H (RMN 1H), e cromatografia gasosa acoplada à espectrometria de massas (CG-EM).

Os valores apresentados na tabela 2 para a percentagem de produtos resultantes da decomposição catalítica do óleo de soja foram obtidos através do somatório das áreas de integração dos cromatogramas, com a percentagem das faixas descritas sendo determinada através de comparação com cromatograma padrão. Nas condições utilizadas, não foi possível a quantificação dos produtos gasosos.

### Tabela 1. Propriedades físico-químicas dos catalisadores.

<table>
<thead>
<tr>
<th>SAR</th>
<th>FRX</th>
<th>RMN 29Si</th>
<th>I3/I4</th>
<th>Vol.Mic. x 10^-2 (cm^3/g)</th>
<th>Área externa (m^2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-SiO2/Al2O3</td>
<td>6,76</td>
<td>-</td>
<td>-</td>
<td>19,7</td>
<td>-</td>
</tr>
<tr>
<td>H-Mordenita</td>
<td>13,35</td>
<td>14,4</td>
<td>0,41</td>
<td>11,8</td>
<td>45</td>
</tr>
<tr>
<td>H-ZSM-5</td>
<td>38,54</td>
<td>51,0</td>
<td>2,77</td>
<td>30,4</td>
<td>170</td>
</tr>
<tr>
<td>USY</td>
<td>5,60</td>
<td>10,8</td>
<td>2,24</td>
<td>-</td>
<td>37</td>
</tr>
</tbody>
</table>

(1) Relação Silício-Alumina;
(2) Relação entre a intensidade das bandas no infravermelho relacionadas aos sítios ácidos de Brunsted (I3) e dos de Lewis (I4).

**RESULTADOS E DISCUSSÃO**

A análise por FTIR dos produtos da decomposição do óleo de soja revelou as características dos grupos funcionais destes produtos, observando-se bandas de vibração na região entre 1800-1700 cm⁻¹, correspondentes a compostos carbonilados, e na região próxima a 1600 cm⁻¹, característica de aromáticos, com a presença de compostos aromáticos sendo confirmada pelas análises de RMN 1H.

Em ambos os casos observou-se que os produtos resultantes de um craqueamento térmico efetivo a 673 K e 773 K são constituídos essencialmente por ácidos carbonílicos. Estas observações foram obtidas a partir das análises dos espectros no infravermelho para o ensaio em branco utilizando-se a silicália, uma pequena molécula que apresenta poucos centros ácidos por ser constituída por ~99,5% de SiO2. Assim, tanto a 673 quanto a 773 K, não foi observada a banda em torno de 1745 cm⁻¹ correspondente à carbonila do éster. Isso indica a ocorrência somente de um craqueamento térmico, que conduziu à formação de ácidos graxos, observado pela banda de carbonila de ácido em torno de 1711 cm⁻¹. Este tipo de craqueamento foi confirmado pelos espectros de RMN 1H, onde os picos correspondentes ao deslocamento químico dos prótons do carbonil ligado ao oxigênio do éster, presentes no espectro do óleo de partida entre 4,0-4,5 ppm, não aparecem nos espectros desta amostra. Por outro lado, nas mesmas condições, os produtos formados por uma mistura de hidrocarbonetos aromáticos e alifáticos são consequência do craqueamento catalítico, uma vez que na presença de catalisadores, tais como a USY, os espectros de 1H e RMN, nas diferentes temperaturas, apresentaram compostos formados exclusivamente de hidrocarbonetos alifáticos e aromáticos. Pelos espectros de RMN 1H pode-se também observar que os compostos aromáticos obtidos apresentam prótons em diferentes ambientes químicos, uma vez que a multiplicidade dos desdobramentos e a área dos picos sugerem que os hidrocarbonetos aromáticos presentes apresentam diferentes padrões de substituição.

Nas tabelas 2, 3 e 4 estão apresentados os resultados obtidos na análise de CG-EM para os produtos de reação a 673 K e 773 K. A complexidade dos componentes nos cromatogramas do efusent líquido foi resolvida utilizando-se a técnica de espectrometria de massas e, a partir dos espectros obtidos, foi possível a identificação da grande maioria dos componentes dos produtos da reação para cada catalisador.

A mordenita é uma zeólita que, apesar de possuir poros grandes, tem a sua estrutura porosa constituída por canais largos, ligados através de canais maiores estreitos que não permitem a difusão da maioria das moléculas. Logo, a mordenita é considerada como tendo estrutura porosa unidimensional, o que a torna particularmente sensível ao bloqueio de seus poros ao longo da reação, principalmente pela formação de coque, mesmo que em pequenas quantidades, conduzindo a uma rápida desativação do catalisador. Este fator talvez possa explicar a baixa atividade catalítica apresentada por esta zeólita, expressa pelo menor rendimento percentual em C5-C12, quando comparado com USY e H-ZSM-5 (Tabela 2).

Na aromatização de hidrocarbonetos alifáticos catalisados por ácidos, na ausência de metais, tanto nafta como cicloparafinas podem ser utilizadas como reagentes de partida, sendo as
Tabela 2. Análise por CG-EM do efluente líquido resultante da decomposição catalítica do óleo de soja.

<table>
<thead>
<tr>
<th>Amostra (T/K)</th>
<th>C5-C12 (faixa gasolina)(%)</th>
<th>&gt;C12 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-SiO2/Al2O3 (673 K)</td>
<td>40,6</td>
<td>59,4</td>
</tr>
<tr>
<td>H-SiO2/Al2O3 (773 K)</td>
<td>84,8</td>
<td>15,2</td>
</tr>
<tr>
<td>H-Mordenita (673 K)</td>
<td>11,3</td>
<td>88,7</td>
</tr>
<tr>
<td>H-Mordenita (773 K)</td>
<td>53,3</td>
<td>46,7</td>
</tr>
<tr>
<td>H-ZSM-5 (673 K)</td>
<td>79,2</td>
<td>20,8</td>
</tr>
<tr>
<td>H-ZSM-5 (773 K)</td>
<td>67,5</td>
<td>32,5</td>
</tr>
<tr>
<td>USY (673 K)</td>
<td>76,3</td>
<td>23,7</td>
</tr>
<tr>
<td>USY (773 K)</td>
<td>64,8</td>
<td>35,2</td>
</tr>
</tbody>
</table>

Tabela 3. Composição (%) dos produtos presentes na faixa C5-C12, resultantes da decomposição catalítica do óleo de soja.

<table>
<thead>
<tr>
<th>Amostra (T/K)</th>
<th>Hidrocarbonetos aromáticos</th>
<th>Hidrocarbonetos alifáticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-SiO2/Al2O3 (673 K)</td>
<td>-</td>
<td>40,6</td>
</tr>
<tr>
<td>H-SiO2/Al2O3 (773 K)</td>
<td>20,9</td>
<td>63,9</td>
</tr>
<tr>
<td>H-Mordenita (673 K)</td>
<td>5,7</td>
<td>5,6</td>
</tr>
<tr>
<td>H-Mordenita (773 K)</td>
<td>31,9</td>
<td>21,4</td>
</tr>
<tr>
<td>H-ZSM-5 (673 K)</td>
<td>73,7</td>
<td>6,1</td>
</tr>
<tr>
<td>H-ZSM-5 (773 K)</td>
<td>59,4</td>
<td>8,1</td>
</tr>
<tr>
<td>USY (673 K)</td>
<td>76,3</td>
<td>-</td>
</tr>
<tr>
<td>USY (773 K)</td>
<td>56,7</td>
<td>8,1</td>
</tr>
</tbody>
</table>

Tabela 4. Distribuição (%) de produtos na faixa C5-C12, resultantes da decomposição catalítica do óleo de soja.

<table>
<thead>
<tr>
<th>Amostra (T/K)</th>
<th>alcanos olefinas</th>
<th>BTX(1)</th>
<th>outros aromáticos(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-SiO2/Al2O3 (673 K)</td>
<td>46,6</td>
<td>53,4</td>
<td>-</td>
</tr>
<tr>
<td>H-SiO2/Al2O3 (773 K)</td>
<td>51,8</td>
<td>8,8</td>
<td>40,4</td>
</tr>
<tr>
<td>H-Mordenita (673 K)</td>
<td>19,7</td>
<td>29,5</td>
<td>16,4</td>
</tr>
<tr>
<td>H-Mordenita (773 K)</td>
<td>21,2</td>
<td>21,6</td>
<td>17,2</td>
</tr>
<tr>
<td>H-ZSM-5 (673 K)</td>
<td>-</td>
<td>48</td>
<td>45,2</td>
</tr>
<tr>
<td>H-ZSM-5 (773 K)</td>
<td>4,0</td>
<td>5,6</td>
<td>19,0</td>
</tr>
<tr>
<td>USY (673 K)</td>
<td>-</td>
<td>33,7</td>
<td>66,3</td>
</tr>
<tr>
<td>USY (773 K)</td>
<td>1,2</td>
<td>2,2</td>
<td>20,8</td>
</tr>
</tbody>
</table>

(1)BTX= mistura de benzeno, tolueno e xilenos
(2)outros aromáticos: orto-, meta- e para-nitrobenzeno, propilbenzenos, butilbenzenos, etc.

olefinas os intermediários chave da reação(1). Elas podem ser usadas como alimentadores do processo ou produzidas in situ através do craqueamento, não somente de parafinas, mas de uma grande variedade de outros compostos tais como terpenos, óleo de milho ou álcoois (heptano).

Metanol é a carga no processo comercial MTG, de conversão de metanol em gasolina, ao qual as olefinas são também os intermediários chave. Neste processo, a transferência de hidrogênio desempenha papel chave na aromatização das olefinas(12). O estudo da reação de transferência de hidrogênio sobre a zeólita Y ultraestabilizada (USY) durante o craqueamento do gasóleo mostrou que, além da quebra das ligações C-C, outras reações podem ocorrer(13). Estas reações é que vão, em alguns casos, determinar a qualidade da gasolina. A transferência de hidrogênio é uma delas, sendo, por exemplo, responsável pela saturação de olefinas, provavelmente através de reações do tipo mostrado na equação 1.

olefinas + cicloalcanos → parafinas + aromáticos

Para essa aromatização catalisada, a H-ZSM-5 classificada como uma zeólita de poros médios, ou uma de poros maiores, como a USY, são mais efetivas, enquanto que H-mordenita ou sílica-alumina amorfa (H-SAA) dão um baixo rendimento de aromáticos devido à rápida formação de coque (tabela 4). Sílica-alumina amorfa tem sido usada como catalisador ácido para reações em escala industrial, tais como craqueamento catalítico, isomerização e alquilação de hidrocarbonetos. Embora as zeólitas tenham substituído os catalisadores amorros, a sílica-alumina amorfa ainda é amplamente utilizada como matriz principal em catalisadores de craqueamento catalítico fluidizado(15). Entretanto, a estrutura amorfa e a baixa área específica apresentadas pela H-SAA conduziram a um produto rico em parafinas, indicando um baixo desempenho catalítico frente à reação desejada.

O estudo da conversão de compostos alifáticos em aromáticos é de considerável importância teórica e industrial. Os aromáticos mais importantes, isto é, benzeno, tolueno e xilenos (BTX), são sintetizados através da ciclização de parafinas e olefinas(16). Na tabela 4, além da formação de BTX, pode-se observar uma maior formação de outros aromáticos, tais como orto-, meta- e para-nitrobenzeno, propilbenzenos e butilbenzenos, entre outros, demonstrando que nas condições utilizadas há o favorecimento de produtos resultantes de mono- e dialquilação no anel aromático, não havendo, portanto, uma seleтивidade significativa na faixa do BTX.

Pode-se observar pela figura 1 que uma maior presença de sítios ácidos de Brönsted, como no caso de H-ZSM-5 e USY, conduz a um produto rico em compostos aromáticos. Resultado similar foi obtido previamente no estudo da aromatização de metanol sobre H-ZSM-5(17). A razão I5/I1 para H-SAA não foi incluída nesta figura uma vez que não foi possível o cálculo da relação I5/I1 a partir de seu espectro no infravermelho, que se apresentou mal resolvido. A relação entre hidrocarbonetos aromáticos e alifáticos em torno de 0,3 (obtida da tabela 3) apresentada por este catalisador a 773 K, justifica a sua substituição por zeólitas, nos processos catalíticos, quando se procura uma melhor seleтивidade em aromáticos na faixa da gasolina.

Figura 1. Influência da acidez na distribuição dos produtos da reação de decomposição catalítica do óleo de soja

Outra característica observada para se explicar os resultados anteriores foi a densidade de sítios ácidos apresentadas pelos catalisadores (Figura 2). Os sítios ácidos de Brönsted das zeólitas estão relacionados diretamente aos hidrogênios de compensação ligados a cada tetraedro de alumínio. Altos valores de SAR ou seja, poucos átomos de alumínio, indicam uma baixa densidade de sítios ácidos, porém mais fortes, porque o ambiente químico gerado pelo maior número de tetraedros de silício em torno propicia este comportamento(18). A H-ZSM-5, apesar de apresentar uma baixa densidade de sítios ácidos (Tabela 1), exibiu um comportamento, quanto à relação entre hidrocarbonetos aromáticos e alifáticos, semelhante à USY, que apresentou uma SAR cerca de 7 vezes menor, mostrando que a característica ácida intrínseca de cada zeólita não influencia os resultados da reação.
CONCLUSÃO

A partir dos resultados obtidos neste trabalho, pode-se concluir que a degradação térmica do óleo de soja conduz à formação de ácidos carboxílicos como um dos produtos primários presentes na mistura reacional. Por outro lado, na presença de catalisadores zeolíticos tais como USY e H-ZSM-5, pode-se observar a formação de hidrocarbonetos aromáticos e alifáticos.

Relacionando-se as propriedades físico-químicas dos catalisadores com a distribuição dos produtos, pode-se estabelecer que a distribuição e a natureza dos ácidos nas zeolitas influenciaram na distribuição dos produtos, observando-se que a predominação da acidez de Brönsted apresentada por USY e H-ZSM-5 conduziu a produtos compostos essencialmente de hidrocarbonetos aromáticos.

A formação deste tipo de produtos parece estar também relacionada à capacidade de adsorção apresentada pelos sólidos testados, uma vez que há uma semelhança significativa no desempenho catalítico de zeolitas com densidades de sítios ácidos de Brönsted tão distintas, como é o caso de USY e H-ZSM-5.

Finalmente, a composição dos produtos como uma função dos valores obtidos nas análises texturais sugere que a reação de aromatização deve ocorrer preferencialmente na superfície externa destes catalisadores.

REFERÊNCIAS