ESTIMATIVA POR DSC DAS ENTHALPIAS DE SUBLIMAÇÃO DA ETILENOURÉIA E DA PROPYLENOURÉIA: ALGUMAS CORRELACOES EMPÍRICAS ENVOLVENDO AMIDAS E TIOAMIDAS

Robson Fernandes de Farias*
Departamento de Química - Universidade Federal de Roraima - UFRR - 69310-270 - Boa Vista - RR

 RECEBIDO EM 5/5/98; ACEITO EM 28/7/98

ESTIMATIVE BY DSC DATA OF THE SUBLIMATION ENTHALPIES FOR ETHYLENEUREA AND PROPYLENEUREA: SOME EMPIRICAL CORRELATIONS WITH AMIDES AND TIOAMIDES. By using DSC data, the enthalpies of sublimation for ethyleneurea and propyleneurea, are calculated as 84 and 89 kJ mol\(^{-1}\) respectively. Using the vaporization enthalpy values for dimethylurea and dimethylpropyleneurea, as obtained from literature, the empirical relation: \(\Delta_{f}^{\circ} H_{m}^\circ (1)/\Delta_{v}^{f} H_{m}^\circ (2) = \Delta_{f}^{\circ} H_{m}^\circ (1)/\Delta_{v}^{f} H_{m}^\circ (2) = \) constant, that relate sublimation or vaporization enthalpies of two different substances and of its methylated derivatives, is obtained. Correlations like that are found to another ureas and thioureas.

Keywords: amides; sublimation enthalpy; vaporization enthalpy.

INTRODUÇÃO

A determinação dos valores das entalpias padrão de sublimação (\(\Delta_{f}^{\circ} H_{m}^\circ\)) ou de vaporização (\(\Delta_{v}^{f} H_{m}^\circ\)) de moléculas orgânicas, adquire grande importância, por exemplo, para o estudo termoquímico de adutos, onde amidas, tiomidas e outras moléculas costumam ser utilizadas como ligantes. Neste caso, os valores de \(\Delta_{f}^{\circ} H_{m}^\circ\) ou \(\Delta_{v}^{f} H_{m}^\circ\) para a molécula ligante, são necessários a fim de que se possa calcular os parâmetros termoquímicos para os adutos (e.g. \(\Delta_{v}^{f} H_{m}^\circ\); entalpia padrão de decomposição). Muitas vezes, os valores de \(\Delta_{f}^{\circ} H_{m}^\circ\) ou \(\Delta_{v}^{f} H_{m}^\circ\) não são encontrados na literatura, sendo necessário estimá-los, usualmente via DSC. Essa estimativa, exige a obtenção de pelo menos sete curvas DSC, além da estimativa da capacidade calorífica da molécula no estado gasoso, utilizando-se parâmetros tabelados na literatura.

O presente trabalho tem por objetivo estabelecer correlações empíricas entre os valores de \(\Delta_{f}^{\circ} H_{m}^\circ\) e/ou \(\Delta_{v}^{f} H_{m}^\circ\), para amidas. Para isto, as moléculas de etilenouréia, eu (2-imidazolidinilone), propilenouréia, pu (tetrahidro-2-pyrimidinone), e seus respectivos derivados metilados, dimetililenouréia, dmeu, e dimetilpropilenouréia, dmpu (todas elas moléculas cíclicas) são utilizadas como moléculas modelo; (CH\(_2\)\(_3\))(NR)\(_2\)

Os valores de \(\Delta_{v}^{f} H_{m}^\circ\) (298) para dmeu e dmpu, foram obtidos utilizando-se dados da literatura\(^1\), a fim de encontrar a expressão que permita calcular \(\Delta_{v}^{f} H_{m}^\circ\) como função da temperatura.

RESULTADOS E DISCUSSÃO

As curvas DSC obtidas para eu e pu, encontram-se reproduzidas nas Figuras 1 e 2. Em ambas as curvas, o primeiro pico endotérmico corresponde à fusão, e o segundo à vaporização da amida.

![Figura 1. Curva DSC para a etilenouréia. O primeiro pico endotérmico corresponde à fusão, e o segundo à vaporização da amida.](attachment:image.png)

Os parâmetros termoquímicos obtidos por DSC para eu e pu, encontram-se agrupados na Tabela 1.
Figura 2. Curva DSC para a propilenouréia. O primeiro pico endotérmico corresponde à fusão, e o segundo à vaporização da amida.

Tabela 1. Capacidades caloríficas (kJ·K⁻¹·mol⁻¹), entalpia de fusão e vaporização, e entalpia padrão de sublimação (kJ·mol⁻¹) para eu e pu.

<table>
<thead>
<tr>
<th></th>
<th>Eu</th>
<th>Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp(cr)</td>
<td>0.13±0.01</td>
<td>0.20±0.01</td>
</tr>
<tr>
<td>Cp(l)</td>
<td>0.15±0.04</td>
<td>0.17±0.02</td>
</tr>
<tr>
<td>Cp(g)</td>
<td>0.10±0.01</td>
<td>0.14±0.00</td>
</tr>
<tr>
<td>Δe_Hm° (Tmcr)</td>
<td>14.7±1.2</td>
<td>30.6±1.9</td>
</tr>
<tr>
<td>Δf_Hm° (Tvap)</td>
<td>63.4±1.5</td>
<td>44.4±1.7</td>
</tr>
<tr>
<td>Δf_Hm° (Tmcr)</td>
<td>83.7±1.9</td>
<td>89.3±2.5</td>
</tr>
</tbody>
</table>

Utilizando-se dados da literatura, pode-se obter as curvas apresentadas nas Figuras 3 e 4, que permitem estabelecer, para as entalpia de vaporização da dmeu e da dmpu, as seguintes equações:

dmeu: Δf_Hm° (kJ·mol⁻¹) = -0.7515 T(K) + 82.49675

dmpu: Δf_Hm° (kJ·mol⁻¹) = -0.08714 T(K) + 93.1168

Figura 3. Entalpia de vaporização (kJ·mol⁻¹) em função de temperatura (K) para a dmeu (curva obtida à partir dos dados da referência 1).

Assim, à 298 K, as entalpia de vaporização da dmeu e da dmpu, são, respectivamente: 60.10 e 67.15 kJ·mol⁻¹.

Podemos constatar que, se desprezarmos os desvios, e tomarmos os valores inteiros mais próximos, teremos:

Δf_Hm°(pu)/Δf_Hm°(eu) = 89/84 = Δf_Hm°(dmpu)/Δf_Hm°(dmeu) = 67/60 = 1.1

Ou seja, as razões entre as entalpia de sublimação de pu e eu e de vaporização de dmpu e dmeu são iguais.

Figura 4. Enthalpia de vaporização (kJ·mol⁻¹) em função da temperatura (K) para a dmpu (curva obtida à partir dos dados da referência 1).

Devemos notar que, enquanto a diferença entre as entalpia de sublimação de pu e eu é de 5 kJ·mol⁻¹ (desprezando-se as incertezas nas respectivas estimativas), a diferença entre as entalpia de vaporização de dmpu e dmeu é de 7 kJ·mol⁻¹, ou seja, valores bastante próximos, indicando que, para ambas as moléculas, a substituição dos dois átomos de H por dois grupos CH₃ tem o mesmo efeito, no que diz respeito à diminuição das forças atrativas intermoleculares.

Os resultados obtidos sugerem que, caso concebamos o valor da entalpia de sublimação (ou de vaporização) de uma determinada substância, poderemos estimar, com extrema facilidade, e de forma bastante confiável, a entalpia de sublimação (ou de vaporização) de outra substância à ela assemelhada, recorrendo à relação empírica:

Δf_Hm°(1)/Δf_Hm°(2) = Δf_Hm°(1)/Δf_Hm°(2) = constante

Uma vez que as entalpia de vaporização de dmpu e dmeu poderiam ser obtidas da literatura, bastaria estimar-se por DSC a entalpia de sublimação da eu ou da pu, para que a entalpia de sublimação da outra substância pudesse ser estimada com facilidade, através da relação proposta. Assim, pode-se estimar entalpia de sublimação à partir de entalpia de vaporização, ou vice-versa.

Lembrando que eu e pu, ou dmeu e dmpu, diferem por apenas um grupo CH₃ no anel (14 g·mol⁻¹), poderíamos supor que relações análogas possam ser encontradas para outras amidas. Tomando-se as entalpia de vaporização da dimetilformamida, e da dimetiltiocetamida (que diferem pela substituição de um átomo de H por um grupo CH₃), ou seja, uma diferença de 14 g·mol⁻¹, temos: Δf_Hm°(dma)/Δf_Hm°(rem) = 50/45 = 1.1, ou seja, a mesma relação numérica.

Se considerarmos as relações entre as entalpia de sublimação, ou de vaporização de amidas e suas respectivas tioamidas, temos como exemplo: para uréia₁₀ e tiouréia: Δf_Hm°(tu)/Δf_Hm°(u) = 112/88 = 1.3, para tetrametiluréia₁₂ e tetrametiltiocetamida: Δf_Hm°(tmtu)/Δf_Hm°(tmt) = 83/51 = 1.6, para dimetilformamida e dimetiltioformamida: Δf_Hm°(dmf)/Δf_Hm°(dmt) = 76/45 = 1.7 e para dimetilacetamida e dimetiltioacetamida: Δf_Hm°(dma)/Δf_Hm°(dmta) = 79/50 = 1.6. Para todos os pares amida-tioamida, as razões encontradas apresentam valores bastante próximos, ou mesmo coincidentes. Assim, uma vez conhecido o valor da entalpia de sublimação (ou de vaporização) da amida (ou tioamida), o valor da entalpia de sublimação (ou vaporização) de sua respective tioamida (ou amida), pode ser estimado, utilizando-se o fator 1.6, que é o encontrado na maior parte das vezes, ou ainda utilizar-se um fator que seja a média daqueles encontrados nos exemplos anteriores.

Os valores das entalpia de vaporização (ou de sublimação) das tioamidas estudadas, foram plotadas como função das entalpia de vaporização (ou de sublimação) de suas respectivas
amidas, obtendo-se a curva apresentada na Figura 5, e a equação que a descreve:

\[\Delta_c v^\text{H}(\text{tioamidas}) = \Delta_c v^\text{H}(\text{amidas}) \times 1,08298 + 26,64564 \]

com coeficiente de correlação igual a 0,99825.

![Figura 5. Enthalpies de sublimação (ou de vaporização) de tu, tmu, dmf e dima, como função das entalpias de sublimação (ou de vaporização) de u, tmu, dmf e dima (todas as valores em kJ mol\(^{-1}\))](image)

O valor praticamente constante 1,6, sugere que, a substituição do átomo de oxigênio (uréias), pelo de enxofre (tioúreas), determina um igual (proporcional) aumento nas respectivas entalpias de vaporização (ou sublimação) das uréias, independentemente da massa molar da molécula considerada, uma vez que o grupo C=O (ou C=S) é responsável pela maior parte das forças atrativas intermoleculares.

REFERÊNCIAS