ELEMENTS OF CHEMICAL DYNAMICS ON THE LEVEL OF THE VARIATIONAL TRANSITION STATE THEORY WITH INTERPOLATED CORRECTIONS. In this article are presented some fundamental elements of the conventional and of the variational transition state theories which are needed to carried out calculations of semi-classical chemical dynamics. Some important bottlenecks in building reliable potential energy surfaces using electronic structure calculations are also discussed. It is put emphasis on the methodology of the variational transition state theory with interpolated corrections (VTST-IC), and its application in the calculations of the rate constants and of the kinetic isotope effect (KIE) of CH₂ + Cl ↔ CH₃ + HCl reaction.

Keywords: variational transition state theory; potential energy surface; rate constants.

INTRODUÇÃO

O grande desafio da dinâmica química teórica é o desenvolvimento de métodos práticos, e ao mesmo tempo precisos para a realização dos cálculos das propriedades das reações envolvendo sistemas poliatômicos com mais de quatro átomos1. A metodologia envolvida no tratamento da dinâmica química teórica pode ser dividida em duas etapas. A primeira delas consiste na obtenção de uma superfície de energia potencial (SEP) eletrônica, e a seguir, o emprego desta superfície como substrato para os cálculos da dinâmica química.

A descrição da SEP pode ser efetuada rigorosamente objetivando uma descrição completa de todos os meandros da superfície e, onde a seguir, são empregados métodos rigorosos da dinâmica química2. Os cálculos ab initio da dinâmica química, por exemplo, permitem obter valores precisos das seções de choque3, probabilidades de transição4 de reações em fase gasosa, envolvendo sistemas pequenos do tipo A + BC ou AB + CD. Por outro lado, a descrição rigorosa da topologia completa da hipersuperfície de reações envolvendo moléculas poliatômicas é muito dependendo computacionalmente porque, por exemplo, para um sistema de N átomos que depende de 3N(N-1)/2 coordenadas, precisamos de ao menos 10 pontos calculados da superfície para cada coordenada, o que exige o cálculo de aproximadamente 10⁴⁶ pontos da SEP.

A fim de capturar a parte essencial das propriedades reacionais, e ao mesmo tempo manter o tratamento computacionalmente exequível, é preciso ignorar uma grande parcela da informação contida numa SEP completa. Dentro desta filosofia, tem sido empregado, com grande sucesso, os métodos da dinâmica da Hamiltoniana do caminho de reação (reaction-path Hamiltonian), 5 e dos métodos semi-clássicos da teoria variacional do estado de transição6 para os cálculos das velocidades de reação envolvendo moléculas poliatômicas. Neste sentido, o método mais eficiente para a determinação das propriedades topológicas essenciais de uma SEP é utilizar o método da coordenada de reação intrínseca (intrinsic reaction coordinate - IRC)⁶ onde a coordenada reacional neste sistema descreve as regiões da superfície conectando os pontos estacionários (regiões da superfície em que o gradiente de energia é nulo), ou seja, a estrutura dos reagentes, produtos e do estado de transição. Este caminho racional é definido também como o caminho de energia mínima (CEM) (minimum energy path - MEP)⁷,⁸, e é definido formalmente em coordenadas isotônicas. O uso deste sistema de coordenadas massa-ponderadas reduz o problema de N-corpos em três dimensões a um problema de um corpo em 3N dimensões⁹.

A informação sobre a sequência de geometrias ao longo do CEM permite calcular a curvatura do caminho reacional, a energia cinética do sistema, e a obtenção das constantes de pressão transversais, o que constitui uma fração crítica da informação sobre a superfície eletrônica (dentro da aproximação Born-Oppenheimer) necessária para os cálculos da dinâmica química de baixa energia, no estado fundamental. A teoria cinética aproximada emprega nos cálculos das constantes de velocidade, utilizando a informação contida no CEM, é a teoria variacional do estado de transição (TVET)⁶. A TVET está fundamentada na teoria do estado de transição (TET)⁸ e na ideia de que a posição do estado de transição ao longo da CEM pode ser otimizada empregando algum critério variacional, a fim de obter valores mais precisos das constantes de velocidade, segundo uma distribuição de Maxwell-Boltzmann.

Dentro da aproximação da TVET, existem várias metodologias que podem ser usadas para a construção do CEM e para os cálculos consequentes das grandezas dinâmicas; dentre os métodos considerados mais promissores, figura a denominada dinâmica direta-íntima ou a teoria variacional do estado de transição com correções interpoladas (TVET-Cl)⁸,⁹. Na sequência seguintes são apresentados os elementos básicos da TET e da TVET, assim como a metodologia envolvida nos cálculos da dinâmica química teórica à nível da TVET-Cl e, numa última seção, são apresentados exemplos de sua aplicação.

TEORIAS DO ESTADO DE TRANSIÇÃO CONVENCIONAL E VARIACIONAL

A teoria do estado de transição (TET) convencional (ou não variacional) foi originalmente introduzida por Eyring⁶, Evans e Polanyi em 1935⁸, e é considerado um dos modelos teóricos aplicados com maior sucesso nos cálculos das velocidades de reação absolutas.⁸,⁹ Podemos dividir os princípios em que baseia-se a TET em cinco suposições⁹ que são resumidas abaixo:

1) A reação ocorre em estados eletronicamente adiabáticos, no estado fundamental, e com o acoplamento vibrônico sendo desprezível;
2) A reação ocorre dentro de um universo clássico. Os efeitos de tuningamento ou de reflexão não-clássico não são considerados nos cálculos da barreira de potencial. Estes efeitos são introduzidos a posteriori;

3) Supõe-se que as moléculas dos reagentes estão distribuídas nos seus respectivos estados de acordo com as leis de distribuição estatística de Maxwell-Boltzmann;

4) As moléculas dos reagentes que cruzam a hiperesurface que divide os reagentes do produtos (estado de transição) na direção dos produtos, não retornam no sentido dos reagentes;

5) Assume-se que mesmo na ausência de equilíbrio entre os reagentes e os produtos, a estrutura do estado de transição evolui e se transforma na estrutura dos produtos. Esta suposição, rigorosamente, é um corolário da quarta suposição.

A derivação da TET é realizada assumindo a existência de um que-sequidro-filho entre a estrutura do estado de transição e dos reagentes. Por isto, a transferência de um atomo A (ou grupo de átomos) procede em duas etapas:

\[A + BC \leftrightarrow ABC^* \rightarrow AB + C \] \hspace{1cm} (1)

Na expressão acima, A, B, e C são átomos ou grupos de átomos, e \(ABC^*\) é o estado de transição. A constante de velocidade absoluta calculada pela TET, à temperatura T, é definida por

\[k(T) = \frac{kT}{h} \frac{K^*}{h} \] \hspace{1cm} (2)

onde \(K^*(T)\) é a constante de equilíbrio para a primeira etapa biomolecular em (1), e \(kT/h\) (k é a constante de Boltzmann e h é a constante de Planck) é uma constante de velocidade, matematicamente, definida em termos das propriedades do ponto sela (ou estado de transição), que é a região mais alta no CEM dos reagentes aos produtos. Outra peculiaridade da teoria é que um grau de liberdade vibracional é removido do ponto sela nos cálculos da constante de equilíbrio. O fator \(k(T)\) na equação (1) é o coeficiente de transmissão que é geralmente igualado à unidade, mas em princípio ele pode contar nossa melhor tentativa para corrigir as deficiências da TET.

A constante de equilíbrio na eq. (2), embora envolva a espécie definida com um grau de liberdade a menos, pode ser relacionada à variação da energia-livre padrão \(\Delta G^0\) através de relações termodinâmicas bem conhecidas, produzindo:

\[k(T) = k(T) \frac{kT}{h} K^0 \exp\left(-\Delta G^0(T)/RT\right) \] \hspace{1cm} (3)

onde \(K^0\) é o inverso da concentração do estado padrão, e R é a constante dos gases. Em razão do caráter matemático da espécie \(ABC^*\), a adição acima não é de um equilíbrio real e por isso denomina-se constante de que-sequidro-filho, definindo uma formulação que-sequidro-filho da TET. A constante de equilíbrio pode ser relacionada à variação da energia-livre através da mecânica estatística, e reescrita na forma abaixo,

\[k^*(T) = \frac{\sigma k(T)}{\sigma^0(T)} \frac{kTQ^0(T)}{h} \exp\left(\Delta V^0 / RT\right) \] \hspace{1cm} (4)

onde \(Q^0(T)\) é a função de partição do estado de transição; \(\sigma^0\) (T) é a função de partição dos reagentes por unidade de volume; \(\Delta V^0\) é a alteração da barreira clássica de potencial, ou seja, a diferença da energia clássica entre o ponto sela e os reagentes no equilíbrio. (É denominada de barreira de potencial clássico porque os efeitos do ponto-zero não estão incluídos). O fator de simetria, \(\sigma\), é incluído nesta equação para o caso mais geral em que considera-se a coexistência na SEP de vários caminhos equivalentes de reação. No caso da reação \(OH + H_2\), por exemplo, o valor de \(\sigma\) é igual a 2 porque ambos os átomos de hidrogênio da molécula \(H_2\) podem ser abstratos. Quando o fator de simetria é definido, como na equação 4, não são incluídos os respectivos fatores de simetria nas funções de partição rotacional.

As equações acima dão uma interpretação simples para o cálculo da velocidade de reação na TET. No limite da mecânica-clássica, a constante de velocidade obtida pelas equações (2-4) é igual ao equilíbrio do fluxo de uma direção através do espaço de fase da hiperesurface que passa através do ponto sela, e que é perpendicular ao grau de liberdade omitido no estado de transição, ou seja, a coordenada de reação. O espaço de fase da hiperesurface é denominado de superfície divisora do estado de transição, ou simplesmente de estado de transição (ET). No equilíbrio, os fluxos direto e reverso, através de qualquer superfície que divida os reagentes do produtos, são os mesmos de modo que associamos as eqs. (2-4) com o fluxo de equilíbrio através da superfície difusora na direção dos reagentes aos produtos.

Por outro lado, os dois fluxos serão iguais somente se as trajetórias não-recruzam (suposição 4), mas se ocorrer qualquer recruzamento (situação real), o fluxo reativo será menor do que aquele calculado através do estado de transição. Desta forma, o valor da constante de velocidade da TET convencional pode ser considerada como um limite superior a constante de velocidade clássica correta.

O efeito de recruzamento na velocidade de reação é ilustrado na Figura 1 que contém seis trajetórias esquematizadas. Os lados esquerdo e direito representam os reagentes e produtos, respectivamente. A linha sólida mostra a superfície divisora do estado de transição no ponto sela. Há seis cruzamentos do ponto sela na direção dos reagentes aos produtos, e a TET as considera todas como contribuindo ao fluxo reativo. Por outro lado, somente duas trajetórias de fato contribuem para o fluxo reativo.

![Figura 1. Esquema ilustrativo do efeito de recruzamento na região do ponto sela. As possíveis trajetórias estão enumeradas de 1 a 6. A linha divisora sólida representa o estado de transição convencional; a linha tracejada representa a posição de um estado de transição generalizado.](image-url)
Neste exemplo, a constante de velocidade da TET convencional está sobrestimada por uma fator de 3 porque das seis trajetórias na Figura 1, aquelas de número 1 e 4 cruzam somente uma vez o ponto sela. Se assumirmos que o estado de transição não está localizado necessariamente no ponto sela, teremos uma alternativa para a sua determinação, o que pode ser mostrado pictoricamente através da linha tracejada na Figura 1. Neste caso, haverá somente três recrutamentos para o ET generalizado na direção dos reagentes para os produtos. Este ET generalizado fornece uma constante de velocidade que estará minimizada. Podemos considerar diferentes posições para o estado de transição ao longo do caminho da reação, e portanto, para os cálculos das constantes de velocidade. A velocidade mínima assim obtida é a mais próxima da realidade, assumindo que os efeitos quânticos e de diabaticidade são desprezíveis [4]. Este método de variar a posição da hipersuperfície do ET, de modo a minimizar o valor da constante de velocidade, é denominado de teoria variacional do estado de transição (TVET).

A forma moderna da TVET foi elaborada com contribuições de vários pesquisadores. Entre eles, estão Kekelidze e Anderson que formularam os elementos essenciais da teoria variacional inspirados nos cálculos de trajetórias. As idéias do emprego da aproximação vibracional adiabática vieram dos trabalhos de Marcus, e a introdução de métodos mais robustos para as correções dos efeitos quânticos iniciou-se com Miller e Pechukas. Marcus, Coltrin e Babamov também, também, correções semi-clássicas de tunelamento multidimensional. Nos últimos anos, Thuillier e colaboradores aprimoraram os cálculos de tunelamento multidimensional e introduziram novos procedimentos para a descrição de SEP e de seu interfaceamento com métdos de cálculos semi-clássicos da TVET.

Na TVET define-se, primeiramente uma coordenada de reação s que mede a distância ao longo do CEM. A origem s = -∞ é centrada no ponto sela, e convencionada-se definir-se como a evolução positiva, o caminho que vai dos reagentes aos produtos, ou seja, os reagentes estarão em s = -∞ e os produtos em s = +∞. Outra consequência da teoria é que calcula-se em cada ponto s, os estados de transição variacionais (s ≠ 0) em espaçamentos previamente definidos. A TVET pode ser formulada utilizando um ensemble canônico ou microcanônico, embora a forma canônica da teoria seja a mais comumente usada. Neste caso, a melhor estimativa para o cálculo das constantes de velocidade será obtida através da minimização da eq. (3).

\[
V^d(s) = V_{\text{res}}(s) + e^d(s)
\]

Na equação (6), \(V_{\text{res}}(s)\) é o caminho de energia mínima (dentro da aproximação Born-Oppenheimer), e \(e^d(s)\) é a soma das energias vibracionais ortogonais do ponto-zero calculadas ao longo do caminho de reação [4].

A discussão até este ponto baseou-se num formalismo clássico (com exceção da inclusão das energias vibracionais do ponto-zero na eq. (6)), mas para os sistemas reais é preciso incluir, também, os efeitos de penetração de barreira (efeito de tunelamento), e de reflexão não-clássico na coordenada de reação. A forma geral da constante de velocidade incluindo correções semi-clássicas de tunelamento é dada por

\[
k^{\text{TVET}}(T,s) = k^{\text{TVCF}}(T,s)k^{\text{TYC}}(T,s)
\]

onde \(k^{\text{TVCF}}(T,s)\) corresponde ao fator de correção, ou coeficiente de transmissão, usado para incorporar os efeitos quânticos na coordenada de reação. O sobreescrito F indica que a correção está baseada em probabilidades de reação no estado fundamental.

Como foi mencionado na introdução, a forma de obter a superfície de energia utilizando o caminho de energia mínima (que é definido em coordenadas massa-ponderadas) faz com que o movimento dos reagentes até os produtos limite-se as regiões exclusivas no limite do CEM. Nas reações cuja curvatura do CEM é pequena, as probabilidades de tunelamento podem ser calculadas empregando somente a informação do caminho da reação, das curvaturas e da velocidade potencial. Entretanto, quando o CEM é altamente curvado, o tunelamento pode proceder através de atalhos (short cuts) e em cortes longos além das regiões do raio de curvatura (swaths regions) da superfície de energia potencial.

A Figura 2 mostra, esquematicamente, dois casos ideais de curvatura do CEM: a) grande curvatura; e b) pequena curvatura. As figuras representam reações lineares do tipo A + BC → AB + C em coordenadas isoinominiais, onde R_{A,B,C} é a distância do átomo A até o centro da ligação BC, e R_{BC} é a distância massa-escalada entre os átomos (ou grupos de átomos) B e C. O fator de escalamiento de massa é (\(m_\mu\))^{1/2}, onde \(m_\mu\) são as massas atômicas dos átomos e \(\mu\) é a massa reduzida entre os grupos A e BC. Nas curvas de contorno de energia potencial expressas em coordenadas isoinominiais, o ângulo entre os vales do reagente e dos produtos é chamado ângulo de inclinação (skew angle) [4], definido pela equação,

\[
k^{\text{TVCF}}(T,s) = \sigma k^\text{minexp}[\Delta G^{\text{TVCF}}(T,s)/RT]
\]
\[
\beta = \arctan \left(\frac{m_{AB} - m_g}{m_{NC}} \right)^{1/2}
\]

onde \(m_{AB} \) é a soma das massas atômicas do sistema reacional; e \(m_g \) e \(m_{NC} \) são, respectivamente, as massas atômicas do átomo B transferido entre os átomos A e C.

Fisicamente, o ângulo de inclinação, \(\beta \) significa que o esca- lamento das coordenadas reacionais converte os efeitos de massa em distâncias relativas. Desta forma, num processo de transferência de um átomo leve entre dois outros maiores pesados (processo do tipo pesado-leve-pesoado), o movimento a partir do vare do reagentes ao vare dos produtos corresponde a uma massa reduzida pequena, e a um movimento rápido. Como consecuencia o dois vales estarão próximos, com um pequeno ângulo de inclinação (Veja Fig. 2a), e corresponderá a um pro- cesso com tunelamento de grande curvatura (TGC) da SEP e a um valor grande para a barreira de potencial. Por outro lado, o último caminho de tunelamento da SEP resulta de um bafo entre um caminho curto e uma barreira baixa de potencial \(15,16 \).

Neste tipo de reação, o sistema procurará compensar o aumen- to da barreira e a reação procederá preferencialmente através dos denominados de atalhos (short cuts) e através de cortes na CEM (swaths) \(17 \).

No caso da transferência de uma espécie mais pesada entre dois átomos (ou grupos) mais leves, ou seja, no processo do tipo leve-pesoado-leve, o caminho reacional será do tipo de tunelamen- to de pequena curvatura (TPC) (Figura 2b). Neste caso, a barreira de potencial clássico será menor e o caminho de tunelamento estará próximo do CEM, e os atalhos e os cortes de grande profundidade na CEM não serão comuns para a reação.

Dependendo das relações de massa e de curvatura caracterís- ticas de cada reação, poderão ser empregados diferentes níveis da teoria para os cálculos semi-clássicos de corregção de tunelamento. Em anos recentes, foram desenvolvidos pelo grupo do Prof. Truhlar diversos métodos para os cálculos semi-clássicos de tunelamento multidimensional; tunelamen- to com curvatura zero (TCZ) \(14 \), tunelamento multidimensional de pequena curvatura com domínio centrífugo (ou simplesmente TPC) \(18,19 \), tunelamento multidimensional de grande curvatura (TGC) \(19,20 \), e o tunelamento multidimensional otimizado microclássico \(21 \). Na aplicação em moléculas poli- atômicas (\(N_{atômicos} > 3 \)), é empregada a versão \(14 \) TGC3 nos cálculos de tunelamento multidimensional de grande curva- tura, o que permite o sistema reacional alcançar todos os níveis vibracionais energeticamente acessíveis em que o tu- nelamento pode ocorrer.

TEORIA VARIACIONAL DO ESTADO DE TRANSIÇÃO COM CORREÇÕES INTERPOLADAS

A realização dos cálculos semi-empíricos da TVET (segun- do um ensemble canônico, ou mais explicitamente falando, ao nível da TVCET) como foi mencionado na introdução, exige a construção de uma SEP suficientemente precisa para a descri- ção das propriedades topológicas essenciais de uma reação. Uma das metodologias desenvolvidas recentemente para tal tarefa é o da dinâmica-direta \(20,21 \), onde obtém-se a informação necessária do potencial direto dos cálculos de estrutura eletrônica. Neste caso, dentro da aproximação da Hamiltoniana do caminho de reação, e mais, especificamente, do método do caminho de energia mínima, a coordenada reacional e determina- da caminhando-se em passos pequenos na direção negativa do gradiente nos cálculos de estrutura eletrônica.

Este procedimento pode ser efetuado através de duas diferente metodologias. Um método consiste em realizar cálculos ab initio de alto nível (AN) ao longo de todo o CEM, e então usar esta informação como dado de entrada para os cálculos semi-clássicos da TVET. Outra variação da dinâmica direta é tornar o código para os cálculos de estrutura eletrônica uma

subrotina do código da TVET de modo que o primeiro é acio- nado para a caracterização (cálculos das energias, geometrias, freqüências vibracionais e Hessianas) de cada ponto específico necessário para a descrição do CEM \(12 \). Entre os cálculos de cálculos de estrutura eletrônica mais comumente empregados estão o ACES II \(13 \) e o GAUSSIAN 94 \(14 \) para os cálculos ao nível MP2 (Moller-Plesset second-order perturbation theory), G4(CSCF) (complete active space self-consistent field) e da te- oria funcional densidade, e o código MOPAC14 empregado para os cálculos semi-empíricos ao nível NDDO (neglect of differential overlap molecular orbital theory) \(15 \).

Outra característica que diferencia o nível de cálculos da dinâmica-direta, é a forma em que a informação sobre a super- fície de energia potencial é interfazada para a realização dos cálculos semi-clássicos da TVET. Neste sentido, até o presente, foram desenvolvidos pelo grupo do Prof. Truhlar três gera- ções de métodos da dinâmica direta: dinâmica direta pura, te- oria variacional do estado de transição interpolada (TVETI), e a dinâmica direta-dual ou, ainda melhor conhecida, como teo- ria variacional do estado de transição com correções interpola- das (TVET-CI) \(16,17 \). Este último corresponde a uma terceira geração de metodologias da dinâmica química direta e é consi- dera como um dos métodos mais promissores (ao nível da teoria variacional semi-clássica) para a obtenção das constantes de velocidade e de outras propriedades dinâmicas, princi- palmente, em reações biomoleculares em fase gasosa. A seguir são apresentadas as etapas envolvidas na TVET-CI.

Primeiramente, são efetuados cálculos ab initio de AN ao nível MP2, CASSCF, ou QCISD(T) (quadratic configuration interaction including singles and doubles with singles and doubles with triple corrections), e utilizando conjuntos bases grandes, de qualidade 6-311G, cc-pVTZ, e aug-cc-pVTZ \(16,17 \), com o obje- tivo de caracterizar os pontos estacionários, ou seja, obter as energias eletrônicas, as geometrias, os momentos de inércia, e as frequências vibracionais harmônicas dos reagentes, produ- tos, estado de transição, e quando for o caso, dos complexos intermediários. No caso da caracterização do estado de transi- ção, calcula-se adicionalmente a Hessiana correspondente.

Numa etapa seguinte são realizados cálculos de baixo nível, RN, onde podem ser empregados métodos ab initio ao nível a nivel MP2, CASSCF \(16,17 \), e teoria funcional densidade \(17 \). Alternativamente, podem ser usados métodos mais aproximados como funções analíticas de potencial \(14,15,17 \), ou métodos semi-empíricos ao ní- vel NDDO empregando as Hamiltonianos do tipo MND0 \(14 \), AM1 \(13 \), PM3 \(15 \), ou NDDO-SRP (neglect of diatomic differential

overlap molecular orbital theory with specific reaction parameters) \(14 \). Nesta etapa, são obtidas as propriedades do pon- to sela e a seguir o caminho de mínima energia é calculado na direção dos reagentes (s negativo), e a seguir na direção dos produtos (s positivo). Os cálculos são realizados, por exemplo, usando o método de Euler \(22 \), onde a direção negativa do gradien- te \(\beta\) é seguida. Ao longo da superfície é realizada uma análise dos modos vibracionais generalizados, em vários posições do cami- nho de reação, num passo \(\delta\) previamente estabelecido. Esta análise inclui a obtenção das frequências vibracionais e das com- ponentes de curvatura do potencial que serão usadas nos cálcu- los de tunelamento de pequena curvatura. Ou então, irão guiar a realização dos cálculos de estrutura eletrônica adicionais de pontos afastados do raio de curvatura do CEM, de modo que seja possível descrever os atalhos (short cuts) e os cortes (swaths) nas superfícies de reações que apresentam grande curva- tura (ou seja, ângulo de inclinação pequeno).

Numa terceira etapa, os cálculos de AN são empregados para interpolar correções aos dados de BN. Nos algoritmos em- pregados na TVET-CI, os valores das energias e das frequên- cias vibracionais são corrigidas, assim como parte da informa- ção correspondente das geometrias, ou seja, os momentos de inércia das funções de partição rotacionais, e os momentos de
inércia para as rotações internas, caso existam. Os parâmetros geométricos em si (ângulo de ligação, por exemplo) não são corrigidos completamente mas, por outro lado, são muito importantes porque contêm informação sobre a curvatura do CEM, e da direção dos modos de vibração. Desta forma, é importante que os cálculos de baixo nível, quer sejam obtidos através de métodos semi-empíricos, ab initio ou através de uma superfície analítica de potencial, fornecem geometrias precisas (ou ao menos mais consistentes) ao longo de todo o caminho reacional, para os reagentes, produtos e o estado de transição.

APLICAÇÃO DA TVET-CI EM REAÇÃO BIMOLECULAR

Nesta seção são apresentados alguns resultados obtidos para a reação \(^{18}\)CH\(_4\) + Cl \(\leftrightarrow\) HCl + CH\(_3\) onde são calculados os valores absolutos das constantes de velocidade, e os efeitos cinéticos isotópicos (ECI). Esta reação é particularmente importante para a química atmosférica pois tem havido uma grande preocupação no estudo de reações que removem o metano, um importante gás estufa, na troposfera e na estratosfera.

Os cálculos de AN da energética da reação e da estrutura dos estados estacionários foram realizados ao nível do método MP2SAC/E-311G(2d,2p)\(^{19}\), onde o acrônimo SAC (scaling of all correlation energy) significa que tanto as energias (barreiras clássicas de potencial e endocíclicidade), quanto os gradientes de energias obtidas com a teoria MP2, foram escaladas de modo a melhor reproduzir os dados estruturais e energéticos experimentais. Os cálculos de BN foram realizados ao nível AM1-SRP, onde os parâmetros semi-empíricos NDDO originais da Hamiltoniana AM1 foram otimizados de modo a melhor reproduzir a barreira de potencial clássico, e as estruturas dos estados estacionários (CH\(_4\), CH\(_3\), HCl e CH\(_3\)Cl, o estado de transição em \(s = 0\)).

Nos cálculos de dinâmica química empregou-se o método de Euler de uma única etapa\(^{19}\) para o cálculo das estruturas ao longo do CEM com um passo reacional de comprimento de 0,001 a.u. Os valores das Hessians e das frequências vibroclásicas harmônicas ao longo do caminho da reação foram calculados ao nível de 0,005 a.u.

Os valores teóricos e experimentais das constantes de velocidade, na faixa de temperaturas de 200 a 1000 K, são apresentados na Tabela 1. Nas colunas, onde está escrito, por exemplo, TPC, significa que os valores teóricos das constantes de velocidade foram obtidos ao nível da TVET com correções de tunelamento de pequena curvatura. Note que para a temperatura de 1000 K, onde o efeito de penetração da barreira é desprezível e o efeito de recrutamento predomina, o valor teórico da constante de velocidade é maior ao nível da TET do que aquele obtido ao nível da TVET. Por outro lado, à baixas temperaturas, (200 K, por exemplo), onde predomina o efeito de tunelamento, a TET convencional prediz uma constante de velocidade cerca de seis vezes menor do que a experimental, enquanto que ao nível da TVET e emparelhando correções de grande curvatura (TGC), a relação entre o valor experimental e o valor teórico é de 2.0. Esta reação é um exemplo típico onde predominam os efeitos de grande curvatura na SEP (Figura 2a) em razão das relações de massa do tipo leve-pesado-leve no sistema H-Cl-H.

Nas tabelas seguintes são mostrados os valores dos ECI para duas reações de abstração do hidrogênio, ou seja, entre os isotópomeros \(^{13}\)CH\(_4\) (Tabela 2) e CD\(_2\) (Tabela 3) com o átomo de cloro. Pode-se observar o grande acordo entre os valores teóricos e experimentais do ECI em ambas as reações de abstração, principalmente, nos valores da fração k(CH\(_4\) + Cl)/k(\(^{13}\)CH\(_4\) + Cl) (Tabela 2) onde o ECI é igual a 1,080 e 1,075 ± 0,005, respectivamente à temperatura de 223 K. Na Figura 3 são mostradas as curvas correspondentes da reação CH\(_4\) + Cl \(\leftrightarrow\) CH\(_3\) + HCl. A curva inferior corresponde ao potencial eletrônico adiabático clássico, V\(_{CEM}\), e a curva superior é o potencial vibroadiabático, V\(_F\), no estado fundamental (Equação 6).

CONCLUSÃO

Superfícies de energia potencial, computacionalmente econômicas e ao mesmo tempo precisas, podem ser obtidas para reações envolvendo moléculas poliatômicas utilizando os métodos da Hamiltoniana do caminho de reação, ou seja, o caminho de energia mínima ou da coordenada de reação intrínseca. A combinação dos métodos semi-clássicos da TVET e dos cálculos de estrutura eletrônica do caminho de mínima energia, com o emprego dos procedimentos de interpolação e de interfaceamento, formam a denominada metodologia da dinâmica química direta. A dinâmica direta, ao nível da TVET-CI, por sua vez, tem sido considerada uma das ferramentas teóricas mais promissoras para

Tabela 1. Valores experimentais e teóricos das constantes de velocidade (em cm\(^{-1}\)molecula\(^{-1}\)s\(^{-1}\)) para a reação CH\(_4\) + Cl \(\leftrightarrow\) CH\(_3\) + HCl.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>TET</th>
<th>TVET</th>
<th>TCZ</th>
<th>TPC</th>
<th>TGC</th>
<th>TPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1,9(15)</td>
<td>1,3(15)</td>
<td>3,3(15)</td>
<td>5,4(15)</td>
<td>5,6(15)</td>
<td>1,1(14)</td>
</tr>
<tr>
<td>250</td>
<td>1,2(14)</td>
<td>9,0(15)</td>
<td>1,6(14)</td>
<td>2,3(14)</td>
<td>2,4(14)</td>
<td>4,1(14)</td>
</tr>
<tr>
<td>300</td>
<td>4,4(14)</td>
<td>3,4(14)</td>
<td>5,1(14)</td>
<td>6,7(14)</td>
<td>6,9(14)</td>
<td>1,0(13)</td>
</tr>
<tr>
<td>400</td>
<td>2,5(13)</td>
<td>2,0(13)</td>
<td>2,5(13)</td>
<td>3,0(13)</td>
<td>3,1(13)</td>
<td>3,5(13)</td>
</tr>
<tr>
<td>500</td>
<td>7,9(13)</td>
<td>6,5(13)</td>
<td>7,6(13)</td>
<td>8,5(13)</td>
<td>8,6(13)</td>
<td>8,8(13)</td>
</tr>
<tr>
<td>600</td>
<td>1,9(12)</td>
<td>1,6(12)</td>
<td>1,7(12)</td>
<td>1,9(12)</td>
<td>1,9(12)</td>
<td>—</td>
</tr>
<tr>
<td>1000</td>
<td>1,5(11)</td>
<td>1,3(11)</td>
<td>1,4(11)</td>
<td>1,4(11)</td>
<td>1,4(11)</td>
<td>—</td>
</tr>
</tbody>
</table>

Ref.: [20a]

Tabela 2. Valores teóricos e experimentais do efeito cinético isotópico para a reação \(^{13}\)CH\(_4\) + Cl \(\leftrightarrow\) \(^{13}\)CH\(_3\) + HCl.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>TET</th>
<th>TVET</th>
<th>TCZ</th>
<th>TPC</th>
<th>TGC</th>
<th>TGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1,028</td>
<td>1,067</td>
<td>1,085</td>
<td>1,114</td>
<td>1,091</td>
<td>1,091</td>
</tr>
<tr>
<td>223</td>
<td>1,026</td>
<td>1,061</td>
<td>1,075</td>
<td>1,099</td>
<td>1,080</td>
<td>1,080</td>
</tr>
<tr>
<td>243</td>
<td>1,024</td>
<td>1,057</td>
<td>1,068</td>
<td>1,090</td>
<td>1,072</td>
<td>1,069</td>
</tr>
<tr>
<td>263</td>
<td>1,023</td>
<td>1,054</td>
<td>1,063</td>
<td>1,082</td>
<td>1,066</td>
<td>1,070</td>
</tr>
<tr>
<td>297</td>
<td>1,021</td>
<td>1,049</td>
<td>1,056</td>
<td>1,072</td>
<td>1,057</td>
<td>1,066</td>
</tr>
<tr>
<td>500</td>
<td>1,013</td>
<td>1,033</td>
<td>1,035</td>
<td>1,041</td>
<td>1,035</td>
<td>—</td>
</tr>
<tr>
<td>1000</td>
<td>1,006</td>
<td>1,023</td>
<td>1,023</td>
<td>1,025</td>
<td>1,023</td>
<td>—</td>
</tr>
</tbody>
</table>

Ref.: [20b]
Tabela 3. Valores teóricos e experimentais dos efeitos cinéticos isotópicos para a reação CD₄ + Cl ↔ CD₃ + DCl.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>TET</th>
<th>TVET</th>
<th>TCZ</th>
<th>TPC</th>
<th>TGC</th>
<th>e,d,Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>45.3</td>
<td>31.2</td>
<td>25.7</td>
<td>18.1</td>
<td>35.8</td>
<td>²</td>
</tr>
<tr>
<td>250</td>
<td>21.5</td>
<td>15.8</td>
<td>14.8</td>
<td>10.9</td>
<td>18.6</td>
<td>²</td>
</tr>
<tr>
<td>300</td>
<td>12.8</td>
<td>9.96</td>
<td>9.17</td>
<td>7.54</td>
<td>11.1</td>
<td>12.2</td>
</tr>
<tr>
<td>304</td>
<td>12.4</td>
<td>9.55</td>
<td>8.90</td>
<td>7.35</td>
<td>10.8</td>
<td>10.9</td>
</tr>
<tr>
<td>350</td>
<td>8.76</td>
<td>6.94</td>
<td>6.60</td>
<td>5.66</td>
<td>7.70</td>
<td>5.2</td>
</tr>
<tr>
<td>400</td>
<td>6.55</td>
<td>5.30</td>
<td>5.10</td>
<td>4.52</td>
<td>5.79</td>
<td>3.9</td>
</tr>
<tr>
<td>450</td>
<td>5.21</td>
<td>4.28</td>
<td>4.15</td>
<td>3.76</td>
<td>4.68</td>
<td>²</td>
</tr>
<tr>
<td>500</td>
<td>4.34</td>
<td>3.60</td>
<td>3.51</td>
<td>3.24</td>
<td>3.83</td>
<td>²</td>
</tr>
<tr>
<td>1000</td>
<td>1.98</td>
<td>1.68</td>
<td>1.67</td>
<td>1.64</td>
<td>1.71</td>
<td>²</td>
</tr>
</tbody>
</table>

Ref: [20c] ²Ref:* [20d]

![Figura 3. Curvas de energia potencial eletrônico clássico, \(V_{CEM} \), (abaixo) e da energia potencial adiabática no estado fundamental, \(V_a \), (acima) para a reação CH₄ + Cl ↔ CH₃ + HCl.](image)

os cálculos das propriedades dinâmicas de reações envolvendo espécies poliatômicas. Em razão da possibilidade de obter-se valores quantitativos, por exemplo, das constantes de velocidade, dos efeitos cinético-isotópicos e de outras propriedades, como os coeficientes de acoplamento entre a coordenada de reação e os modos vibracionais ortogonais ao longo do CEM, é possível, na atualidade, um intercâmbio complementar entre o trabalho dos dinamicistas teóricos e dos experimentalistas.

AGRADECIMENTOS

Somos gratos à FAPESP pela bolsa de pós-doutorado durante o estágio no Departamento de Química e no Instituto de Supercomputação da Universidade de Minnesota. Agradecemos também a hospitalidade dos membros do grupo do Prof. Donald Gene Truhlar durante esse período de treinamento científico.

REFERÊNCIAS

742 QUÍMICA NOVA, 22(5) (1999)