ANION-BINDING AND SENSING PROPERTIES OF NOVEL RECEPTORS BASED ON N-(INDOL-3-YLGLYOXYLYL)BENZYLAMINE

Wei Wei*, Yong jun Lv, Shi jun Shao* and Yong Guo
*Material and Chemical Engineering College, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China
*Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China

The detailed characterization data for receptor 1–5 were as follows:

Receptor 1 (C_{25}H_{48}N_{10}O_{7}): Yield: 78%; Light yellow crystal; M.p. > 300 °C; ε: 27107 M⁻¹ cm⁻¹ (λ_{DMSO} = 332 nm); IR (KBr, cm⁻¹): 3300, 3225, 1680, 1620, 1527, 1486, 1310, 1239, 1129, 1011, 895, 756, 741; ¹H NMR (400 MHz, DMSO-d₆): δ 12.44 (s, 2H, N–H), 10.60 (s, 2H, N–H), 8.95 (d, 2H, Ar–H), 8.33 (m, 2H, Ar–H), 7.79 (m, 2H, Ar–H), 7.59 (m, 2H, Ar–H), 7.36 (m, 2H, Ar–H); ¹³C NMR (100 MHz, DMSO-d₆): δ 180.94, 161.87, 139.15, 136.37, 130.10, 126.28, 126.02, 125.32, 123.71, 122.88, 121.40, 112.74, 111.96; MS (ESI): 451.1 ([M+H⁺]).

Receptor 2 (C_{26}H_{48}N_{10}O_{7}): Yield: 74%; Light yellow crystal; M.p. > 300 °C; ε: 28309 M⁻¹ cm⁻¹ (λ_{DMSO} = 326 nm); IR (KBr, cm⁻¹): 3340, 3261, 2930, 1673, 1638, 1597, 1505, 1313, 1245, 1169, 1141, 1125, 860, 821, 802, 784, 743, 685; ¹H NMR (400 MHz, DMSO-d₆): δ 12.39 (s, 2H, N–H), 10.77 (s, 2H, N–H), 8.78 (s, 1H, Ar–H), 8.53 (s, 2H, Ar–H), 8.32 (m, 4H, Ar–H), 7.60 (t, 2H, J = 16 Hz, Ar–H), 7.39 (t, 2H, J = 16 Hz, Ar–H), 7.32 (m, 3H, Ar–H); ¹³C NMR (100 MHz, DMSO-d₆): δ 182.05, 162.50, 138.53, 138.34, 138.43, 128.91, 126.16, 123.61, 122.74, 121.25, 116.57, 112.70, 112.61, 112.00; MS (ESI): 451.1 ([M+H⁺]).

Receptor 3 (C_{25}H_{38}N_{10}O_{7}): Yield: 80%; Yellow powder; M.p. > 300 °C; ε: 30174 M⁻¹ cm⁻¹ (λ_{DMSO} = 339 nm); IR (KBr, cm⁻¹): 3447, 3309, 3258, 2930, 1668, 1600, 1503, 1308, 1240, 1125, 1009, 949, 878, 856 , 823, 775, 732, 688, 658; ¹H NMR (400 MHz, DMSO-d₆): δ 12.38 (s, 2H, N–H), 10.75 (s, 2H, N–H), 8.83 (s, 4H, Ar–H), 8.32 (m, 2H, Ar–H), 7.91 (d, 2H, J = 8 Hz, Ar–H), 7.59 (m, 2H, Ar–H), 7.32 (m, 4H, Ar–H); ¹³C NMR (100 MHz, DMSO-d₆): δ 181.94, 162.12, 138.69, 136.41, 134.36, 126.24, 123.61, 122.76, 121.28, 120.59, 112.71, 112.01; MS (ESI): 451.1 ([M+H⁺]).

Receptor 4 (C_{26}H_{48}N_{10}O_{7}): Yield: 82%; White powder; M.p. > 300 °C; ε: 20237 M⁻¹ cm⁻¹ (λ_{DMSO} = 324 nm); IR (KBr, cm⁻¹): 3298, 3190, 3057, 2935, 1651, 1600, 1582, 1538, 1510, 1492, 1234, 1165, 1131, 745, 717; ¹H NMR (400 MHz, DMSO-d₆): δ 12.26 (s, 2H, N–H), 8.92 (s, 2H, N–H), 8.82 (s, 2H, Ar–H), 8.27 (t, 2H, J = 8 Hz, Ar–H), 7.55 (t, 2H, J = 8 Hz, Ar–H), 7.28 (t, 4H, J = 8 Hz, Ar–H), 2.89 (s, 4H, CH₂–H); ¹³C NMR (100 MHz, DMSO-d₆): δ 181.96, 163.83, 138.58, 136.25, 126.22, 123.42, 122.55, 121.28, 112.55, 112.16, 38.28; MS (ESI): 403.1 ([M+H⁺]).

Receptor 5 (C_{26}H_{48}N_{10}O_{7}): Yield: 68%; Yellow powder; M.p. > 300 °C; ε: 16230 M⁻¹ cm⁻¹ (λ_{DMSO} = 318 nm); IR (KBr, cm⁻¹): 3224, 3126, 2929, 1595, 1513, 1431, 1235, 1143, 927, 784, 742; ¹H NMR (400 MHz, DMSO-d₆): δ 12.38 (s, 2H, N–H), 10.82 (s, 2H, N–H), 8.74 (d, 2H, J = 4 Hz, Ar–H), 8.27 (t, 2H, J = 8 Hz, Ar–H), 7.60 (t, 2H, J = 8 Hz, Ar–H), 7.30 (m, 4H, Ar–H); ¹³C NMR (100 MHz, DMSO-d₆): δ 181.86, 163.12, 138.56, 136.53, 125.80, 123.73, 122.82, 121.28, 112.75, 112.52; MS (ESI): 375.1 ([M+H⁺]).

Figure 1S. Changes in the UV-Vis absorption spectra of receptor 1 (2.5 × 10⁻⁵ mol·L⁻¹) in DMSO–H₂O (9:1, v/v) solution upon the addition of various anions.

Figure 2S. Changes in the UV-Vis absorption spectra of receptor 5 (5.0 × 10⁻⁵ mol·L⁻¹) in DMSO–H₂O (9:1, v/v) solution upon the addition of F⁻.

*e-mail: weiw0811@163.com
Figure 3S. Changes in 1H NMR spectra of receptor 5 in the presence of F^- in DMSO-d_6.

Scheme 1S. Possible binding modes of receptor 5 with fluoride ions.