Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review |
Janderson Barbosa Leite de AlbuquerqueI; Camila Macaúbas da SilvaI; Diégina Araújo FernandesI; Pedro Isaac Vanderlei de SouzaII; Maria de Fátima Vanderlei de SouzaI,*
I. Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, 58051-900 João Pessoa - PB, Brasil Recebido em: 17/12/2021 *e-mail: mfvanderlei@ltf.ufpb.br Pavonia Cav., is a genus in the Malvaceae sensu lato family, containing 271 species with worldwide distribution, although with a higher diversity in America and Asia. Species from this genus are traditionally used in folk medicine with several biological activities, arousing scientific interest on the search for the substances responsible for such activities. This review aimed to provide and expand the scientific interest through phytochemical and pharmacological studies and the utilization of those plants in folk medicine. Species P. odorata and P. zeylanica are described in literature, specially at India, following the traditional medicine system Ayuverda, while the other species are studied mostly at Africa and America. There have been around 169 compounds isolated and characterized for such genus, most of them from the metabolic classes fat acids, terpenoids, flavonoids and phenolic compounds. Those species have shown in vivo, in vitro and in silico significant pharmacological activities, which include anti-inflammatory, analgesic, antimicrobial, cytotoxic, antitumoral, antidiabetic and antioxidant properties. Based on those informations, the search for new sources of plant based biologic prototypes with potential for the treatment of several diseases is of major scientific, economical and medicinal interest. INTRODUCTION Medicinal plants constitute the main therapeutic source of folk medicine. Traditional knowledges are passed through generations due to the stark believes that come since primitive folks and healers. Previous ethno-pharmaceutical-botanical studies form the foundation to the development of new drugs from medicinal herbs.1 Plants provide an essential economic role as they are used as a drug source.2 This fact rises in developing countries due to lesser side effects and easy access that low-income populations have to those plants, making them an almost inexhaustible source of remedies for those people.3 Several chemical compounds that act as potential therapeutic agents have been isolated from plant species.4 Studies about those compounds are based on ethnobotanical, chemical and pharmacological knowledges, aiming to find out new bioactive molecules. On this context, species from Malvaceae sensu lato family arouse major interests of the scientific community due to the fact that those species are important economic sources in agriculture, decorations, manufacturing, food and medicine.5 Among several genus belonging to Malvaceae sensu lato, we highlight Pavonia Cav., which has several biological and pharmacological activities described in literature about folk medicine. Those activities have been confirmed through the isolation, identification and characterization of secondary metabolites, as well as several pharmacological activities described for those compounds.6 The genus Pavonia Cav. includes approximately 271 species distributed worldwide, being more diverse in America and Africa, with only two species being recorded for Asia. A lot of chemical and pharmacological studies with species P. odorata and P. zeylanica are described in literature, mostly for India, due to the traditional medicine system Ayuverda.7 Approximately 224 species can be found in America, ranging from USA to Uruguay, including the Antilles and excluding Chile. In Africa, approximately 46 species can be found.8 In Brazil, 136 species of Pavonia can be found, ranging from Amazon rainforest, Caatinga, Cerrado, Atlantic Forest, Pampas and Pantanal wetlands.9 Based on presented data, this review aims to accomplish a bibliographical survey about traditional uses of Pavonia species and evaluate the chemical and pharmacological potential of this genus in order to drive future researches based on natural products as a source of new drugs.
METHODOLOGY Information about the use of plants by folk medicine, phytochemical studies, botanic characteristics and pharmacological activities of genus Pavonia have been based and collected from scientific data banks such as: 'Web of Science', 'Scifinder', 'Pubmed' and 'Scholar Google', using papers, books, dissertation and thesis from the year 1918 until April 2021 and searching for the keyword 'Pavonia'. Following this methodology, we consulted 156 scientific articles, having, as inclusion criteria, the presence of information regarding the use of Pavonia genus in traditional medicine, phytochemical studies, pharmacological and/or biological activities. The exclusion criteria of the articles involved repetition of those in different databases, review articles that contained references used in the manuscript, information with the keyword 'Pavonia' that do not concerns the genus, articles with only botanical data or articles not available for access on the platforms used. A single patent referring to the species P. schiedeana (JP 2001181172A (2001)) was found as part of a cosmetic composition. The development of this revision paper aimed the study of this genus in order to expand the scientific interest through knowledge of isolated compounds with several biological activities, as those are the candidates to new drugs isolated from Pavonia species. The present study and data have been extracted by the author (JBLA) and confirmed by other (DAF, CMS, PIVS, MFVS). All data are resumed in tables and their descriptions have been resumed as updated information.
RESULTS AND DISCUSSION Botanical description Pavonia comprises species of herbs, shrubs and bushes. Its flowers are, generally, solitary, composed by four epicalyxes, several free bracteoles, a tubulous and cupuliform calyx composed by five petals, carpels uniovulate and stigma capitate (Figure 1). The fruits are schizocarp, formed by five mericarps with a nervous-reticulate dorsal face, smooth lateral faces and smooth or striated obovoid or reniform seeds.10
Figure 1. Pavonia plants. A) P. alnifolia, B) P. multiflora, C) P. fruticosa, D) P. malacophylla, E) P. hastata, F) P. varians, G) P. procumbens, H) P. urens, I) P. odorata, J) P. spinifex
Some species of Pavonia possess floral nectaries formed by multicellular glandular trichomes, providing a thick area located near the internal base of calyx. This characteristic attracts hummingbirds, which are pollinators of tubulous flowers, such as P. glazioviana11 and P. multiflora. Species that possesses flowers with twisted corolla and short staminal tube formed by free stamens, such as P. malacophylla, P. varians, P. zeylanica and P. distinguenda, are pollinated by bees.12 Ethnopharmacological relevance Different species of Pavonia Cav. are related in folk medicine as a treatment for several diseases. Among the most used parts of those plants used by some tribes in therapeutics are flowers, bark, roots, rhizomes and flowers (Table 1).
Juice of P. odorata leaves is used by traditional medicine Ayuverda as a treatment for dysentery, gonorrhea and halitosis, whereas leaves macerate as a paste are used as a treatment for rheumatism, foot infections and antipyretic.13-18 Powder from seeds of P. senegalensis is used as a contraceptive.19 Decoct of P. urens roots is largely used as a treatment for toothache.20,21 Brewing of roots and leaves of P. zeylanica, as well as decocts, powder and pastes are largely used by eastern communities as a treatment for osteoarthritis, joint pain, bone fractures, cough with discharge and healing of wounds.22-26 Leaves' juice and the entire plant prepared as infusion are also used for its vermifuge and purgative properties.27-30 Several ethnopharmacological studies regarding Pavonia species have been described in literature, which give us basis for deepening the chemical and pharmacological knowledge of those herbs, since many of the pharmacological activities are related to traditional use of medicinal plants, therefore providing essential information to the development of new drugs. Chemical composition Based on literature data, 29 references in the area of phytochemistry have been find to species of the genus Pavonia: 10 papers referred to species P. odorata (06) and P. zeylanica (04); 9 papers referred to species P. malacophyla (03), P. glazioviana (03) and P. sepium (03), and; 2 papers referred to P. cancelatta. Besides, several other papers have been related in this field with the species P. varians, P. xanthogloea, P. sepioides, P. distinguenda, P. multiflora, P. hastata, P. lasiopetala, P. schiedeana and P. alnifolia. 169 compounds have been isolated and/or identified in the genus Pavonia (Table 2), comprehending the most diverse classes of secondary metabolites ever related.
Fat acids, terpenoids, steroids, flavonoids, phenolics and other compounds such as pheophytins, hydrocarbons and volatile oils are some of the substances that can be found in the genus Pavonia. A broad profile of such compounds within has been detected in a study of the chemical composition of oils in the aerial parts of the species Pavonia odorata through hyphenated gas chromatography techniques coupled with mass spectrometry.105 All compounds and their chemical structures are related in Table 2 and Figure 2, respectively.
Fatty acids Fatty acids are molecule that consists of the most diverse lipids and, by enzymatic action, become free fatty acids, presenting powerful biological activities.122 Studies described in literature review that activities of those compounds depend on the level of unsaturation and the size of hydrocarbons chain, resulting antibacterial, antifungal and antimycobacterial activities.123,124 A recent study has shown that P. malacophylla and P. cancellata have palmitic, oleic and linoleic acids as majoritarian fatty acids.125 Eighteen fatty acids have been isolated and identified in species P. sepium, P. odorata and P. zeylanica (Table 2). Palmitic (3) and caproic (10) fatty acids showed significant activities in preparatory in silico studies as having inhibitory properties for the activities of glycerol-kinase enzyme from the fungus Epidermophyton floccosum104 and inhibitory properties for the alcohol-dehydrogenase enzyme from the protozoan Entamoeba histolytica.53 Terpenoids and steroids Terpenoids can be find in several groups of organisms. In plants, they are present under distinct aspects such as volatile molecules or adhered to resins. Their oxygenated, hydrogenated and dehydrogenated derivates have hydrocarbons as a base-structure, being widely distributed among plant species.126 Forty-six terpenoids have been isolated and identified in P. odorata, P. multiflora, P. malacophylla, P. glazioviana and P. distinguenda, being the last one of the most common of Pavonia species. Terpenoids α-amirine (19) and β-amirine (20) showed in vitro antibacterial activities against Escherichia coli.107 The terpenoid cicloart-23Z-en-3β-25-diol (28) also presented in vitro antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, Candida tropicalis, Candida parapsilopsis e Aspergillus fumigatus.110 Compounds loliolide (26) and the taraxerol p-metoxybenzoate (27) have demonstrated significant in vitro activities on the inhibition of electrons flux in photosystem II of plants, therefore allowing those molecules to become future candidates to herbicides as they prevent photosynthesis.127 Steroids are a minority class in Pavonia genus, with only five isolated compounds (65-69). Phytosteroids share as common structure ciclopentanoperidrofenaterne as carbonic skeleton, being β-sitosterol and stigmasterol the most common steroids of this genus and commonly encountered attached to sugar monomers.128 Flavonoids and phenolic compounds Flavonoids are the most important and diversified class of phenolic compounds among natural products, being relatively abundant secondary metabolites and responsible for several functions in plants' organisms.129 Seventeen flavonoids have been isolated from Pavonia species, being sixteen of those members of subclass flavone (70-84) and one, to flavanonol subclass (85). Many isolated flavonoids have glycosids attached to their structures. Among the isolated compounds, flavonoid 5,7-dihydroxy-3,8,4'-trimethoxyflavone (79) has demonstrated in vitro antimicrobial, in silico anticancer, in vitro antineoplasic, in vitro antiprotozoal and in vito photoprotective activities.130,131 The compound tiliroside (70) has demonstrated in vitro and in vivo antihypertensive activities, leading to reduction of peripheric vascular and vasorelaxant resistances by blocking the Calcium channels dependent of voltage (CaV) in cells of vascular smooth muscle (VSMCs);132 in vitro antimicrobial activity;31,107 in silico antidiabetic activity through interaction with human pancreatic α-amylase enzyme;114 in vitro anticancer and anticolinesterasic activities.31 Nineteen phenolic compounds (87-105) have been identified and isolated from the species P. xanthogloea, P. sepioides, P. multiflora and P. schiedeana. Studies demonstrated that those compounds presented different activities. Gross ethanolic extract and fractions of ethyl acetated from extractive process of P. sepioides leaves have shown a large quantity of phenolic compounds present on the samples, which explains the antioxidant activity of those substances against free radicals inhibitions tests through the methods of DPPH and ABTS.119 Besides that species, other studies have shown a large potential of antioxidant activity as a primordial activity of those phenolic compounds such as described for P. xanthogloea, P. zeylanica, P. odorata, P. distinguenda, P. varians, P. glazioviana and P. procumbens.31,44,82,83,90,105,117,133-135 Other compounds Differently from previously mentioned compounds, other classes of secondary metabolites have been isolated and identified in a lesser frequency on Pavonia species. Among those compounds, we can list alcohols, aldehydes, ketones, pheophytins and hydrocarbons (106 171) (Table 2, Figure 2). Chaves107 has conducted a phytochemical study of P. malacophylla, isolating and identifying the compound 173-ethoxy-phaeophorbide A (104), which has presented in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli. Pharmacological study Several pharmacological activities involving Pavonia species have been arousing interest of scientific community hence there is a large collection of reports of their use in folk medicine. Researches have been developed to confirm the anti-inflammatory, analgesic, antioxidant, cytotoxic, antitumoral, antidiabetic, antimicrobial and antiviral potential of Pavonia species through scientific analysis (Table 3).
Anti-inflammatory and analgesic activities Plants constitute a vast and precious source of natural products, which are essential to human health as they play several biological roles such as anti-inflammatory and analgesic activities, as it has been demonstrated by some studies over extracts and isolated compounds.106 Alcoholic extract of P. zeylanica leaves has shown in vivo anti-inflammatory activity in rat foot edema induced by carrageenan and in vivo antinociceptive activity by inhibition of arachidonic acid formation.88 Methanolic, chloroformic and ethyl acetate extracts of P. odorata roots have also demonstrated in vivo anti-inflammatory activity in albino rat foot edema induced by carrageenan.106 (Table 3). Antioxidant activity Antioxidants are substances that control the action of free radicals, minimizing the risk of diseases, specially those related to oxidative damage on nervous system. Naturally, some enzymes are responsible for the protection of harmful effects of free radicals, such as catalasis and dismutasis superoxide, as well as natural products with antioxidant action such as ascorbic acid, tocopherol, phenolics and flavonoids.133 The evaluation of antioxidant activity of extracts from the aerial parts of Pavonia species has shown the presence of phenolics and flavonoids as its constituents, having those compounds demonstrated a huge antioxidant potential in tests through the methods DPPH (1,1-diphenil-2-picril-hidrazil), H2O2 (hydrogen peroxide), NO (nitric oxide), ABTS (2,2'-azino-bis(3-etilbenzotiazoline-6-sulphonic) acid), FRAP (Ferric Reduction Antioxidant Power), SNP (Sodium Nitroprussiate radicals), phosphomolybdenium reduction, ORAC (Oxygen Radical Absorbance Capacity) and TBARS (Thiobarbituric Acid Reactive Substances) (Table 3). Cytotoxic and anticancer activities Cancer is one of the most lethal diseases that affects humankind. Some phytochemical studies have demonstrated anticancer potentials in several plants due to their chemoprotective and antioxidant properties, which make plants an option to minimize the adverse effects of conventional cancer treatments.156 Extracts and isolated compounds from P. glazioviana, P. distinguenda and P. odorata have demonstrated anticancer activities. The tiliroside flavonoid isolated from P. distinguenda has shown in vitro anticancer activity against leukemic, ovarian, colon, prostate, kidney, breast, resistant breast and melanoma cells, besides being cytotoxic to Artemia salina larvae.31 Other flavonoid isolated from P. glazioviana (5,7-dihydroxy-3,8,4'-trimethoxyflavone) (79) has shown in silico anticancer activity against carcinogen uterine and ovarian cells, while having in vitro antineoplastic activity against sarcoma, carcinoma, melanoma and squamous cell carcinoma.130,131 Extracts from the whole plant of P. odorata has shown in vitro anticancer activity against Ehrlich Ascites Carcinoma (EAC), lung and breast cancer.44,138 Antidiabetics activity Several plants are used by folk medicine worldwide against diabetes.86 Some of the species quoted in literature are P. zeylanica and P. odorata. Extracts from their leaves, stems and roots have been evaluated regarding their in vitro antidiabetic activity, being constated a significant reduction of glycose levels in bloodstream.86,136,139 In silico hypoglycemic activity of the tiliroside flavonoid isolated from P. varians through the interaction of this compound with human pancreatic α-amylase enzyme presented a lesser linking energy of -9.4 kcal/mol, being more stable in its active site when compared to the standard drug acarbose, that presented an energy of -7.6 kcal/mol.114 Antimicrobial activity Bacterial resistance has been increasing significatively in the last years, which leads to high mortalities caused by generalized infections. This fact is a consequence of ungovernable use of antibiotics. For those reasons, the search for new natural compounds with antimicrobial activity and new action mechanisms if necessary for the control of such micro-organisms.140 Extracts, fractions and compounds isolated from Pavonia species have shown a great antimicrobial potential that has already been described in literature. Among the compounds that were tested against several fungal and bacterial lineages, we have α-amirine (19), β-amirine (20), 173-ethoxy-phaeophorbide A (104)107 isolated from P. malacophylla, cycloart-23Z-en-3β,25-diol (28), 5,7-dihydroxy-3,8,4'-trimethoxyflavone (79)110 isolated from P. glazioviana, tiliroside (70)31,107 isolated from P. malacophylla e P. distinguenda and caproic (10) and palmitic (3)104 acids identified in P. odorata (Table 3). Other activities Other activities have been related for Pavonia species. Methanolic extract from P. odorata leaves has shown in vitro larvicide and repellent activities against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus.153 Researches have shown anti-hypertensive,36,116,132 anti-helminthic,35,141-143,152 anti-urolithic,34 gastroprotective,149 laxative,136 photoprotective,131 antiretroviral146,147 and several other kinds of activities. Furthermore, a study on P. senegalensis has showed that fresh liquid ethanolic extract of leaves has not a very strong toxicity, becoming nephrotoxic and slightly hepatotoxic after 28 days.68
CONCLUSIONS Pavonia Cav. is one of the largest genus on Malvaceae sensu lato family and has showed different biologic activities amongst its species, which have already been mentioned in literature and scientific proved. Studies have shown that fatty acids, terpenoids, flavonoids and phenolics are the most common classes of secondary metabolites on this genus. Pharmacological in vivo, in vitro and in silico tests have given the researches promissory results due to the presence of those compounds, both isolated and present on the extracts, corroborating the reports of use of those herbs in folk medicine. Nonetheless, there is a major need of keep exploring chemical and biological potentials of Pavonia species, both already and never studied, since medicinal plants are almost inexhaustible sources of bioactive molecules that can help the treatment and cure of several diseases that affect human populations worldwide. This paper is a database with very relevant information from both phytochemical and biological studies of Pavonia species that can be further explored, aiming to understand the use of Pavonia by traditional medicine in various diseases, becoming alternatives for therapies by the use of these natural products with emphasis on the benefit of the world population.
ACKNOWLEDGMENTS We thank Coordenação de Aperfeiçoamento do Ensino Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for all the support to our researches.
REFERENCES 1. Mohammed, F.; Shifa, S. P.; J. Pharmacogn. Phytochem. 2019, 8, 1887. 2. Vijayashalini, P.; Jayanthi, G.; Abirami, P.; Journal of Medicinal Plants Studies 2017, 5, 331. 3. Reddy, A. M.; Suresh Babu, M. V.; Rao, R. R.; Herba Pol., 2019; 65, 40 [Crossref]. 4. Sterlin Raj, T.; Edal Kuvin, J.; Asha, K. R. T.; Mohammed, A. A.; Puspharaj, A.; Raubbin, R. S.; World J. Pharm. Sci. 2016, 4, 518. 5. Vadivel, V.; Sriram, S.; Brindha, P.; Int. J. Green Pharm. 2016, 10, 33 [Crossref]. 6. Fernandes, D. A.; Assis, E. B.; Souza, M. S. R.; Souza, P. I. V.; Souza, M. F. V.; Quim. Nova 2020, 43, 787 [Crossref]. 7. Johnson, M.; Maharajan, M.; Janakiraman, N.; Journal of Medicinal Herbs and Ethnomedicine 2015, 1, 125 [Crossref]. 8. Grings, M.; Boldrini, I. I.; Revista Brasileira de Biociências 2013, 11, 352. 9. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB9118, acessada em abril 2022. 10. Esteves, G. L.; Krapovickas, A.; Boletim de Botânica da Universidade de São Paulo, 2009, 27, 63 [Crossref]. 11. Mazzotti, M. R. R. M.; Dissertação de Mestrado, Universidade do Estado da Bahia, Brasil, 2015. 12. Pando, A. M. S. C.; Dissertação de Mestrado, Instituto de Botânica da Secretaria do Meio Ambiente, Brasil, 2009. 13. Behera, K. K.; Mandal, P.; Mahapatra, D.; Ethnobotanical Leaflets 2006, 10, 305. 14. Madhu, V.; Naik, D. S. R.; Ethnobotanical Leaflets, 2009, 13, 1337. 15. Mishra, R. K.; Patel, S. P.; Srivastava, A.; Vashistha, R. K.; Singh, A.; Puskar, A. K.; Nature and Science 2012; 10, 22. 16. Singh, P. S.; Kumar, P. P.; Srinivasulu, D.; Nat. Oral Care Dent. Ther. 2020, 407 [Crossref]. 17. Kingston, C.; Nisha, B. S.; Kiruba, S.; Jeeva, S.; Ethnobotanical Leaflets 2007, 11, 32. 18. Ranjithkumar, A.; Chittibabu, C. V.; Renu. G.; Indian Journal of Medicine and Healthcare 2014, 3, 322. 19. Adebisi, I. M.; Alebiosu, O. C.; Int. J. Curr. Res. Chem. Pharm. Sci. 2014, 1, 81. 20. Tadesse, M.; Hunde, D.; Getachew, Y.; Ethiopian Journal of Health Sciences 2005, 15, 89. 21. Megersa, M.; Jima, T. T.; Goro, K. K.; J. Evidence-Based Complementary Altern. Med. 2019, 1 [Crossref]. 22. Babu, N. V. J.; Murty, P. P.; Rao, G. M. N.; International Journal of Botany and Research 2020, 10, 55. 23. Babu, N. V. J.; Murty, P. P.; Rao, G. M. N.; IOSR J. Pharm. Biol. Sci. 2020, 15, 44 [Crossref] 24. Kumar, R. B.; Suryanarayana, B.; Ethnobotanical Leaflets 2008, 12, 896. 25. Somashekhara Achar, K. G.; Boosanur, V.; Shivanna, M. B.; Indian Journal of Traditional Knowledge 2015, 1, 147. 26. Kannan, M.; Kumar, T. S.; Rao, M. V.; Global Journal Research Medicinal Plants & Indigenous Medicine 2016, 5, 203. 27. Tiwari, K. P.; Minocha, P. K.; Phytochemistry 1980, 19, 701 [Crossref]. 28. Anand, R. M.; Nandakumar, N.; Karunakaran, L.; Ragunathan, M.; Murugan, V.; Natural Product Radiance 2005, 5, 139. 29. Daddam, J. R.; Kotha, P.; Katike, U.; Basha, S.; Dowlathabad, M. R.; Research Square 2020, 1 [Crossref]. 30. Khare, C. P.; Indian Medicinal Plants - An Illustrated Dictionary, New Delhi, 2007. 31. Agra, M. F.; Freitas, P. F.; Barbosa-Filho, J. M.; Rev. Bras. Farmacogn. 2007, 17, 114 [Crossref]. 32. Garcia, C. M.; Tese de Doutorado, Universidade de Santa Maria, Brasil, 2007. 33. Caballero-George, C.; Gupta, M. P.; Planta Med. 2011, 77, 1189 [Crossref]. 34. Ramprasad, R.; Anil, N.; Hameed, S. S.; Shifama, J. M. R.; Venkateshan, N.; J. Drug Delivery Ther. 2019, 9, 102 [Crossref]. 35. Nakhare, S.; Garg, S. C.; Ancient Science of Life 1992, 12, 227. 36. Nakhare, S.; Garg, S. C.; Bhagwat, A. W.; Ancient Science of Life 1997, 17, 23. 37. Waghmare, S. D.; International Research Journal on Advanced Science Hub 2020, 2, 268 [Crossref]. 38. Jamil, M.; Mansoor, M.; Latif, N.; Muhammad, S.; Gull, J.; Shoab, M.; Khan, A.; Pak. J. Sci. Ind. Res., Ser. B 2019, 62, 61 [Crossref]. 39. Chitme, H. R.; Alok, S.; Jain, S. K.; Sabharwal, M.; Int. J. Pharm. Sci. Res., 2010, 1, 24 [Crossref]. 40. Panda, S. P.; Sahoo, H. K.; Subudhi, H. N.; Sahu, A. K.; American Journal of Ethnomedicine 2014, 1, 260. 41. Ahmed, S.; Hasan, M. M.; Ahmed, S. W.; Mahmood, Z. A.; Azhar, I.; Habtemariam, S.; Phytopharmacology 2013, 4, 390. 42. Ahmed, S.; Hasan, M. M.; Ahmed, S. W.; Pak. J. Pharm. Sci. 2014, 27, 1583. 43. Premamalini, P.; Sharmila, S.; International Journal of Advanced Herbal Science and Technology 2017, 3, 67 [Crossref]. 44. Selvan, V. T.; Kakoti, B. B.; Gomathi, P.; Kumar, D. A.; Islam, A.; Gupta, M.; Mazumder, U. K.; Pharmacologyonline 2007, 2, 453. 45. Murty, P. P.; Rao, G. M. N.; Rao, D. S.; Journal of Science 2015, 5, 385. 46. Jenifer, S. P.; Lekha, K.; Journal of Medicinal Plants Studies 2019, 7, 196. 47. Shukla, V. S.; Nigam, I. C.; Proc. Inst. Chem. (India) 1961, 33, 229. 48. Baslas, K. K.; Perfum. Essent. Oil Rec. 1959, 50, 896. 49. Kirtikar, K. R.; Basu, B. D.; Pâninî office, Bahadurganj, 1918. 50. Gritto, M. J.; Nanadagopalan, V.; Doss, A.; Adv. Appl. Sci. Res. 2015, 6, 157. 51. Nandagopalan, V.; Doss, A.; Anand, S. P.; The International Journal Of Science & Technoledge 2014, 2, 1. 52. Bensy, D.; Gamble, A; Kaptchuk, T.; Chinese Herbal Medicine - Materia medica, 1993, 331. 53. Nayak, J. K.; Sahu, S. K.; Barik, E.; Bhattacharyay, D.; Pandey, M.; Plant Cell Biotechnol. Mol. Biol. 2020, 21, 166 [Crossref]. 54. Lakshmanan, R.; Thiruvalluvar, M.; Subramanian, M. P. S.; Ganthi, A. S.; Eur. J. Biomed. Pharm. Sci. 2018, 5, 294. 55. Randive, K. R.; Hatekar, S.; Eastern Geographer 2010, 15, 79. 56. Sharma, J. P.; Srivastava, A.; Thakur, S. P.; Barpete, P. K.; Singh, S.; Int. J. Pharm. Life Sci. 2010, 1, 18. 57. Iswarya, P.; Lakshmikantham, T.; Mohan, S.; International Journal of Ayurveda and Pharma Research 2019, 7, 45. 58. Jayaprasad, B.; Thamayandhi, D.; Sharavanan, P. S.; International Journal of Research in Pharmaceutical and Biosciences 2012, 2, 1. 59. Deepthy, R.; Remashree, A. B.; International Journal of Herbal Medicine 2014, 2, 92. 60. Soudahmini, E.; Ganesh, M. S.; Panayappan, L.; Madhu, C. D.; Natural Product Radiance 2005, 4, 492. 61. Shanmugam, S.; Annadurai, M.; Rajendran, K.; J. Appl. Pharm. Sci. 2011, 1, 94. 62. Karthiyayini, R.; Int. J. Pharm. Sci. Res. 2012, 3, 1829 [Crossref]. 63. Manoranjitham, M.; Premalatha, S.; Int. J. Adv. Res. Biol. Sci., 2015, 2, 256. 64. Kumar, P. P.; Ayannar, M.; Ignacimuthu, S.; Indian Journal of Traditional Knowledge 2007, 6, 579. 65. Ticktin, T.; Dalle, S. P.; J. Ethnopharmacol., 2005, 96, 233. [10.1016/j.jep.2004.09.015] DOI: http://dx.doi.org/10.1016/j.jep.2004.09.015 66. Suryanarayana, S. N.; Seetharami, R. T. V. V.; Medicinal Plant Research 2017, 7, 1. [Crossref]. 67. Andrade-Cetto, A.; Heinrich, M.; J. Ethnopharmacol. 2005, 99, 325. [Crossref]. 68. Shehu, U. F.; Aliyu, I. M.; Ilyas, N.; Ibrahim, G.; Trop. J. Nat. Prod. Res. 2020, 4, 21. [Crossref]. 69. Abdulhamid, Z.; Interviewer, Kaduna, 2016. 70. Neuwinger, H.; Medpharm Scientific, Stuttgart, 2000. 71. Burkill, H. M.; Royal Botanic Gardens Kew, United Kingdom, 1997. 72. Francis, J. K.; Gen. Tech. Rep. IITF-GTR-26, San Juan, 2004. 73. Liogier, H. A.; Iberoamericana de Ediciones, Inc., San Juan, 1990. 74. Michael, M.; Dissertação de Mestrado, Universidade do Cairo, Egito, 2018. 75. Rasoanaivo, P.; Petitjean, A.; Ratsimamanga-Urverg, S.; Rakoto-Ratsimamanga, A.; J. Ethnopharmacol. 1992, 37, 117 [Crossref]. 76. De Boer, H. J.; Kool, A.; Broberg, A.; Mziray, W. R.; Hedberg, I.; Levenfors, J. J.; J. Ethnopharmacol., 2005, 96, 461 [Crossref]. 77. Dayal, B.; Purohit, R. M.; Flavour Industry 1971, 2, 484. 78. Rabearivony, A. D.; Kuhlman, A. R.; Razafiarison, Z. L.; Raharimalala, F.; Rakotoarivony, F.; Randrianarivony, T.; Rakotoarivelo, N.; Randrianasolo, A.; Bussmann, R. W.; Ethnobotany Research & Applications 2015, 14, 123 [Crossref]. 79. Pavela, R.; Benelli, G.; Exp. Parasitol. 2016, 167, 103. [Crossref]. 80. Karunamoorthi, K.; Hailu, T.; Journal of Ethnobiology and Ethnomedicine 2014, 10, 1 [Crossref]. 81. Degu, S.; Berihun, A.; Muluye, R.; Gemeda, H.; Debebe, E.; Amano, A.; Abebe, A.; Woldkidan, S.; Tadele, A.; Pharmacy & Pharmacology International Journal 2020, 8, 274 [Crossref]. 82. Leal, R. S.; Maciel, M. A. M.; Dantas, T. N. C.; Melo, M. D.; Pissinate, K.; Echevarria, A.; Rev. Fitos 2007, 3, 26. 83. Mostardeiro, C. P.; Mostardeiro, M. A.; Morel, A. F.; Oliveira, R. M.; Machado, A. K.; Ledur, P.; Cadoná, F. C.; Silva, U. F.; Cruz, I. B. M.; Pharmacognosy Magazine 2014, 10, 630 [Crossref]. 84. Grochowski, D. M.; Locatelli, M.; Granica, S.; Cacciagrano, F.; Tomczyk, M.; Compr. Rev. Food Sci. Food Saf. 2018, 17, 1395 [Crossref]. 85. Samy, R. P.; Ignacimuthu, S.; J. Ethnopharmacol. 2000, 69, 63 [Crossref]. 86. Kalarani, D. H.; Venkatesh, P.; Dinakar, A.; Res. J. Pharm. Technol. 2009, 2, 789. 87. Basu, S. K.; Rupeshkumar, M.; Kavitha, K.; Pharmacologyonline 2009, 1, 1144. 88. Kumari, A.; Lalitha, K. G.; Venkatachalam, T.; Kalaiselvi, P.; Sethuraman, M. G.; Asian Journal of Research in Pharmaceutical Science 2011, 1, 113. 89. Chavan, S.; Singh, A.; Daniel, M.; International Journal of Pharmaceutical Development & Technology 2014, 4, 157. 90. Kumar, M. P.; Sivasankar; Senthilvel, G.; Prabhu, L. R.; World J. Pharm. Pharm. Sci. 2018, 7, 644 [Crossref]. 91. Sathishkumar; Anbarasu; Int. J. Plant, Anim. Environ. Sci. 2019, 9, 6. 92. Bhuvaneswari, R.; Ramanathan, R.; Mathumathi, T. K.; Madheswaran, A.; Dhandapani, R.; Journal of Medicinal Plants Studies 2015, 3, 33. 93. Muthuraja, R.; Nandagopalan, V.; Thomas, B.; Marimuthu, C.; European Journal of Environmental Ecology 2014, 1, 33. 94. Murty, P. P.; Rao, G. M. N.; J. Phytol. 2010, 2, 17. 95. Madhava, C. K.; Sivaji, K.; Tulasi, R.; Students offset printers, Tirupati, 2008. 96. Wilson, E.; Rajamanickam, G. V.; Vyas, N.; Agarwal, A.; Dubey, G. P.; Indian Journal of Traditional Knowledge 2007, 6, 678. 97. Rao, D. M.; Rao, U. V. U. B.; Sudharshanam, G.; Ethnobotanical Leaflets 2006, 10, 198. 98. Madrigal, R. V.; Smith Jr., C. R.; Lipids 1973, 8, 407. 99. Bohannon, M. B.; Kleiman, R.; Lipids 1977, 13, 270. 100. Harwood, J. L. In The Biochemistry of Plants; Stumpf, P. K., ed.; Davis, 1980, cap. 1. 101. Rao, K. S.; Lakshminarayana, G.; J. Am. Oil Chem. Soc. 1985, 62, 714. 102. Rayar, A.; Aeganathan, R.; Ilayaraja, S.; Prabakaran, K.; Manivannan, R.; Am. J. Phytomed. Clin. Ther. 2015, 3, 79. 103. Kumar, A.; Pande, C. S.; Kaul, R. K.; Indian J. Appl. Chem. 1965, 28, 190. 104. Dube, P.; Purohit, R. M.; Riechst., Aromen, Koerperpflegem. 1973, 23, 149. 105. Sahu, S. K.; Nayak, J. K.; Prakash, K. V. D.; Bhattacharyay, D.; Plant Cell Biotechnol. Mol. Biol. 2020, 21, 149. 106. Kashima, Y.; Nakaya, S.; Miyazawa, M.; J. Oleo Sci. 2014, 63, 149 [Crossref]. 107. Chaves, O. S.; Tese de Doutorado, Universidade Federal da Paraíba, Brasil, 2016. 108. Albuquerque, J. B. L.; trabalho não publicado. 109. Lopes, L. G.; Dissertação de Mestrado, Universidade Federal do Espírito Santo, Brasil, 2014. 110. Oliveira, M. S.; Tese de Doutorado, Universidade Federal da Paraíba, Brasil, 2019. 111. Casimiro-Júnior, F.; Chaves, O. S.; Fernandes, M. M. M. S.; Agra, M. F.; Teles, Y. C. F.; Souza, M. F. V.; 36a Reunião Anual da Sociedade Brasileira de Química, São Paulo, Brasil, 2013. 112. Fernandes, M. M. M. S.; Dissertação de Mestrado, Universidade Federal da Paraíba, Brasil, 2013. 113. Gualberto, F. T. A.; Trabalho de Conclusão de Curso, Universidade Federal da Paraíba, Brasil, 2013. 114. Fernando, L. M.; Lima, A. A.; Dias, W. S.; Moura-Júnior, R. T.; Teles, Y. C. F.; Souza, M. F. V. In Processos Químicos e Biotecnológicos; Andrade, D. F., Souza, A. A., Andrade, D. E., Oliveira, E. J., Santos, F., Lopes, J. E. F., Neves, O. F.,Lima, L. C., Ferreira Filho, N., Oliveira, V. A., eds.; Editora Poisson: Belo Horizonte, 2020, cap. 3. 115. Puckhaber, L. S.; Stipanovic, R. D.; Bost, G. A.; Herbs, Medicinals, and Aromatics 2002, 556. 116. Andrade, T. U.; Ewald, B. T.; Freitas, P. R.; Lenz, D.; Endringer, D. C.; Int. J. Pharm. Pharm. Sci. 2012, 4, 124. 117. Silva, C. M.; Trabalho de Conclusão de Curso, Universidade Federal da Paraíba, Brasil, 2018. 118. Sotelo, A.; Villavicencio, H.; Montalvo, I.; Gonzalez-Garza, M. T.; Afr. J. Tradit., Complementary Altern. Med. 2005, 1, 4 [Crossref]. 119. Gasca, C. A.; Cabezas, F. A.; Torras, L.; Bastida, J.; Codina, C.; Free Radicals and Antioxidants, 2013, 3, 55 [Crossref]. 120. Tiwari, K. P.; Minocha, P. K.; Masood, M., Proc. Natl. Acad. Sci., India, Sect. A 1978, 48, 158. 121. Tiwari, K. P.; Choudhary, R. N.; Acta Cienc. Indica, Chem. 1980, 6, 36. 122. Desbois, A. P.; Smith, V. J.; Appl. Microbiol. Biotechnol., 2010, 85, 1629 [Crossref]. 123. Mandey, J. S.; Wolayan, F. R.; Pontoh, C. J.; Kowel, Y. H. S.; Scientific Papers, Series D, Animal Science 2020, 63, 214. 124. Seidel, V.; Taylor, P. W.; Int. J. Antimicrob. Agents 2004, 23, 613 [Crossref]. 125. Fernandes, D. A.; Chaves, O. S.; Teles, Y. C. F.; Agra, M. F.; Vieira, M. A. R.; Silva, P. S. S.; Marques, M. O. M.; Souza, M. F. V.; Quim. Nova 2021, 44, 137 [Crossref]. 126. Yadav, N.; Yadav, R.; Goyal, A.; Int. J. Pharm. Sci. Rev. Res. 2014, 27, 272. 127. Lopes, L. G.; Tavares, G. L.; Thomaz, L. D.; Sabino, J. R.; Borges, K. B.; Vieira, P. C.; Veiga, T. A. M.; Borges, W. S.; Chem. Biodiversity 2016, 13, 284 [Crossref]. 128. Santos, R. A. F.; Dissertação de Mestrado, Universidade Federal da Bahia, Brasil, 2010. 129. Santos, D. S.; Rodrigues, M. M. F.; Estação Científica (UNIFAP) 2017, 7, 29 [Crossref]. 130. Sousa, A. P.; Oliveira, M. S.; Fernandes, D. A.; Ferreira, M. D. L.; Cordeiro, L. V.; Souza, H. D. S.; Souza, M. F. V.; Pessoa, H. L. F.; Oliveira-Filho, A. A.; Silveira e Sá, R. C.; Scientific Electronic Archives 2021, 13, 120 [Crossref]. 131. Sousa, A. P.; Nunes, M. K. S.; Oliveira, M. S.; Fernandes, D. A.; Ferreira, M. D. L.; Cordeiro, L. V.; Souza, H. D. S.; Souza, M. F. V.; Pessoa, H. L. F.; Oliveira Filho, A. A.; Silveira e Sá, R. C.; Sci. Plena 2020, 16, 1 [Crossref]. 132. Silva, G. C.; Pereira, A. C.; Rezende, B. A.; Silva, J. F. P.; Cruz, J. S.; Souza, M. F. V.; Gomes, R. A.; Teles, Y. C. F.; Cortes, S. F.; Lemos, V. S.; Planta Med. 2013, 79, 1003. [Crossref]. 133. Rajalakshmi, P.; Vadivel, V.; Subashini, G.; Pugalenthi, M.; Int. J. Adv. Res. 2016, 4, 1751 [Crossref]. 134. Silva, C. M.; Félix, M. D.; Aquino, A. K.; Oliveira, M. S.; Teles, Y. C. F.; Souza, M. F. V.; Mol2Net 2016, 2, 1 [Crossref]. 135. Badami, S.; Channabasavaraj, K. P.; Pharm. Biol. 2007, 45, 392 [Crossref]. 136. Kalarani, D. H.; Dinakar, A.; Senthilkumar, N.; Int. J. Drug Dev. Res. 2012, 4, 298. 137. Kirtikar, K. R.; Basu, B. D.; Indian Medicinal Plants, International Book Distributors Book Sellers and Publishers: Deheradun, 1999. 138. Girish, H. V.; Vinod, A. B.; Dhananjaya, B. L. Satish Kumar, D.; Duraisamy, S.; Pharmacogn. J. 2016, 8, 28 [Crossref]. 139. Rayar, A.; Manivannan, R.; Int. J. Pharm. Sci. Invent. 2015, 4, 46 [Crossref]. 140. Lozano, C. M.; Vasquez-Tineo, M. A.; Ramirez, M.; Infante, M. I.; Pharmacogn. Commun. 2021, 11, 52 [Crossref]. 141. Garg, S. C.; Anthelmintic activity of some medicinal plant products, Research Periodicals and Book Publishing House, Houston, 2003, 207. 142. Garg, S. C.; Natural Product Radiance 2005, 4, 18. 143. Bhavani, S.; J. Pharm. Sci. Res. 2015, 7, 812. 144. Singh, D.; Singh, B.; Dutta, B. K.; International Journal of Science 2012, 4, 3 [Crossref]. 145. Mapunya, M. B.; Dissertação de Mestrado, Universidade de Pretória, África do Sul, 2009. 146. Matsuse, I. T.; Lim, Y. A.; Hattori, M.; Correa, M.; Gupta, M. P.; J. Ethnopharmacol. 1999, 64, 15 [Crossref]. 147. Dan, G.; Castellar, A.; Alumni - Revista Discente da UNIABEU 2015, 3, 8. 148. Shaku, M.; Yamamoto, T.; Shishido, M.; Takashi, T.; Yoshitani, S.; Yoshimi, F., Jpn. Kokai Tokkyo Koho 2001. (JP 2001181172). 149. Ewald, B. T.; Loyolla, C. M.; Pereira, A. C. H.; Lenz, D.; Medeiros, A. R. S; Andrade, T. U.; Nogueira, B. V.; Pereira, T. M. C.; Endringer, D. C.; Rev. Bras. Plantas Med. 2015, 17, 392 [Crossref]. 150. Vahitha, R.; Venkatachalam, M. R.; Murugan, K.; Jebanesan, A.; Bioresour. Technol. 2002, 82, 2 [Crossref]. 151. Kamaraj, C.; Abdul Rahuman, A.; Bagavan, A.; Abduz Zahir, A.; Elango, G.; Kandan, P.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Tropical Biomedicine 2010, 27, 211. 152. Singhai, A.; Singour, P. K.; Garg, G.; Pawar, R. S.; Patil, U. K.; Research Journal of Pharmacology and Pharmacodynamics 2009, 1, 82. 153. Selvakumar, B.; Gokulakrishnan, J.; Elanchezhiyan, K.; Deepa, J.; International Journal of Current Advanced Research 2015, 4, 221. 154. Mago, N.; Sofat, I. B.; Jethi, R. K.; Indian J. Med. Res. 1989, 90, 77. 155. Jethi, R. K.; Duggal, B.; Sahota, R. S.; Gupta, M.; Sofat, I. B.; Indian J. Med. Res. 1983, 78, 422. 156. Jeeva Gladys, R.; Kalai Arasi, R.; Elangovan, S.; Mubarak, H.; J. Appl. Pharm. Sci. 2013, 3, 176 [Crossref]. |
On-line version ISSN 1678-7064 Printed version ISSN 0100-4042
Qu�mica Nova
Publica��es da Sociedade Brasileira de Qu�mica
Caixa Postal: 26037
05513-970 S�o Paulo - SP
Tel/Fax: +55.11.3032.2299/+55.11.3814.3602
Free access